File size: 7,994 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# [2022-10-23] Copied from https://github.com/NVIDIA/apex/blob/master/apex/transformer/functional/fused_softmax.py
# for benchmarking.
# We added support for seqlen=2k and seqlen=4k

# coding=utf-8
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from apex._autocast_utils import _cast_if_autocast_enabled
from apex.transformer.enums import AttnMaskType
from fused_softmax_lib import (
    scaled_masked_softmax_backward,
    scaled_masked_softmax_forward,
    scaled_masked_softmax_get_batch_per_block,
    scaled_upper_triang_masked_softmax_backward,
    scaled_upper_triang_masked_softmax_forward,
)


class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function):
    """

    Fused operation which performs following three operations in sequence

    1. Scale the tensor.

    2. Apply upper triangular mask (typically used in gpt models).

    3. Perform softmax.

    """

    @staticmethod
    def forward(ctx, inputs, scale):
        scale_t = torch.tensor([scale])
        softmax_results = scaled_upper_triang_masked_softmax_forward(inputs, scale_t[0])
        ctx.save_for_backward(softmax_results, scale_t)
        return softmax_results

    @staticmethod
    def backward(ctx, output_grads):
        softmax_results, scale_t = ctx.saved_tensors
        input_grads = scaled_upper_triang_masked_softmax_backward(
            output_grads, softmax_results, scale_t[0]
        )
        return input_grads, None


def scaled_upper_triang_masked_softmax(inputs, _, scale):
    b, np, sq, sk = inputs.size()
    assert sq == sk, "causal mask is only for self attention"
    # Reshaping input to 3D tensor (attn_batches, sq, sk)
    inputs = inputs.view(-1, sq, sk)
    args = _cast_if_autocast_enabled(inputs, scale)
    with torch.cuda.amp.autocast(enabled=False):
        probs = ScaledUpperTriangMaskedSoftmax.apply(*args)
    return probs.view(b, np, sq, sk)


# NOTE (mkozuki): `ScaledMaskedSoftmax` somehow doesn't work well with `torch.cuda.amp.custom_fwd`.
# Without `cast_inputs` kwarg, somehow inputs are not cast to dtype used in the autocast context.
# So I needed to manually write two `torch.autograd.Function` inheritances.
# Fused operation which performs following three operations in sequence
# 1. Scale the tensor.
# 2. Apply the mask.
# 3. Perform softmax.
class ScaledMaskedSoftmax(torch.autograd.Function):
    @staticmethod
    def forward(ctx, inputs, mask, scale):
        scale_t = torch.tensor([scale])
        softmax_results = scaled_masked_softmax_forward(inputs, mask, scale_t[0])
        ctx.save_for_backward(softmax_results, scale_t)
        return softmax_results

    @staticmethod
    def backward(ctx, output_grads):
        softmax_results, scale_t = ctx.saved_tensors
        input_grads = scaled_masked_softmax_backward(output_grads, softmax_results, scale_t[0])
        return input_grads, None, None


def scaled_masked_softmax(inputs, mask, scale):
    # input is 4D tensor (b, np, sq, sk)
    args = _cast_if_autocast_enabled(inputs, mask, scale)
    with torch.cuda.amp.autocast(enabled=False):
        return ScaledMaskedSoftmax.apply(*args)


class FusedScaleMaskSoftmax(torch.nn.Module):
    """

    fused operation: scaling + mask + softmax



    Arguments:

        input_in_fp16: flag to indicate if input in fp16 data format.

        input_in_bf16: flag to indicate if input in bf16 data format.

        attn_mask_type: attention mask type (pad or causal)

        scaled_masked_softmax_fusion: flag to indicate user want to use softmax fusion

        mask_func: mask function to be applied.

        softmax_in_fp32: if true, softmax in performed at fp32 precision.

        scale: scaling factor used in input tensor scaling.

    """

    def __init__(

        self,

        input_in_fp16,

        input_in_bf16,

        attn_mask_type,

        scaled_masked_softmax_fusion,

        mask_func,

        softmax_in_fp32,

        scale,

    ):
        super().__init__()
        self.input_in_fp16 = input_in_fp16
        self.input_in_bf16 = input_in_bf16
        if self.input_in_fp16 and self.input_in_bf16:
            raise RuntimeError("both fp16 and bf16 flags cannot be active at the same time.")
        self.input_in_float16 = self.input_in_fp16 or self.input_in_bf16
        self.attn_mask_type = attn_mask_type
        self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion
        self.mask_func = mask_func
        self.softmax_in_fp32 = softmax_in_fp32
        self.scale = scale

        if not (self.scale is None or softmax_in_fp32):
            raise RuntimeError("softmax should be in fp32 when scaled")

        if self.scaled_masked_softmax_fusion:
            if self.attn_mask_type == AttnMaskType.causal:
                self.fused_softmax_func = scaled_upper_triang_masked_softmax
            elif self.attn_mask_type == AttnMaskType.padding:
                self.fused_softmax_func = scaled_masked_softmax
            else:
                raise ValueError("Invalid attn_mask_type.")

    def forward(self, input, mask):
        # [b, np, sq, sk]
        assert input.dim() == 4

        if self.is_kernel_available(mask, *input.size()):
            return self.forward_fused_softmax(input, mask)
        else:
            return self.forward_torch_softmax(input, mask)

    def is_kernel_available(self, mask, b, np, sq, sk):
        attn_batches = b * np

        if (
            self.scaled_masked_softmax_fusion  # user want to fuse
            and self.input_in_float16  # input must be fp16
            and (
                self.attn_mask_type == AttnMaskType.causal
                or (self.attn_mask_type == AttnMaskType.padding and mask is not None)
            )
            and 16 < sk <= 8192  # sk must be 16 ~ 8192
            and sq % 4 == 0  # sq must be divisor of 4
            and sk % 4 == 0  # sk must be divisor of 4
            and attn_batches % 4 == 0  # np * b must be divisor of 4
        ):
            if 0 <= sk <= 8192:
                batch_per_block = self.get_batch_per_block(sq, sk, b, np)

                if self.attn_mask_type == AttnMaskType.causal:
                    if attn_batches % batch_per_block == 0:
                        return True
                else:
                    if sq % batch_per_block == 0:
                        return True
        return False

    def forward_fused_softmax(self, input, mask):
        # input.shape = [b, np, sq, sk]
        scale = self.scale if self.scale is not None else 1.0
        return self.fused_softmax_func(input, mask, scale)

    def forward_torch_softmax(self, input, mask):
        if self.input_in_float16 and self.softmax_in_fp32:
            input = input.float()

        if self.scale is not None:
            input = input * self.scale
        mask_output = self.mask_func(input, mask) if mask is not None else input
        probs = torch.nn.Softmax(dim=-1)(mask_output)

        if self.input_in_float16 and self.softmax_in_fp32:
            if self.input_in_fp16:
                probs = probs.half()
            else:
                probs = probs.bfloat16()

        return probs

    @staticmethod
    def get_batch_per_block(sq, sk, b, np):
        return scaled_masked_softmax_get_batch_per_block(sq, sk, b, np)