File size: 3,214 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (c) 2023, Tri Dao.

import torch
import torch.nn as nn

from flash_attn.ops.triton.cross_entropy import cross_entropy_loss


class CrossEntropyLoss(nn.Module):
    def __init__(

        self,

        ignore_index=-100,

        reduction="mean",

        label_smoothing=0.0,

        logit_scale=1.0,

        lse_square_scale=0.0,

        inplace_backward=False,

        process_group=None,

        return_z_loss=False,

    ):
        """

        Arguments:

            ignore_index: int. If labels == ignore_index, the loss is set to 0.0.

            label_smoothing: float

            lse_square_scale: float. If > 0, we add lse_square_scale * lse(logits) ^ 2 to the loss.

                This is also referred to as "z-loss".

            inplace_backward: bool. If True, we do the backward pass in-place by modifying the logits.

                This saves memory.

            process_group: if not None, we're doing Tensor Parallel: each process is responsible for

                one part of the vocab. The loss will be aggregated across processes.

            return_z_loss: bool. If True, we return the component of the loss contributed by

                the lse_square_scale value. This value is only for logging and does not support

                backprop.

        """
        super().__init__()
        if reduction not in ["mean", "none", "sum"]:
            raise NotImplementedError("Only support reduction = 'mean' or 'none' or 'sum'")
        self.ignore_index = ignore_index
        self.reduction = reduction
        self.label_smoothing = label_smoothing
        self.logit_scale = logit_scale
        self.lse_square_scale = lse_square_scale
        self.inplace_backward = inplace_backward
        self.process_group = process_group
        self.return_z_loss = return_z_loss

    def forward(self, input, target):
        """

        Arguments:

            input: (batch, vocab_size)

            target: (batch,)

        Returns:

            losses: (batch,) if reduction is 'none', else (1,), dtype float

            z_loss: (batch,) if reduction is 'none', else (1,), dtype float (if self.return_z_loss)

        """
        assert input.is_cuda and target.is_cuda, "Only support CUDA tensors"
        loss, z_loss = cross_entropy_loss(
            input,
            target,
            label_smoothing=self.label_smoothing,
            logit_scale=self.logit_scale,
            lse_square_scale=self.lse_square_scale,
            ignore_index=self.ignore_index,
            inplace_backward=self.inplace_backward,
            process_group=self.process_group,
        )
        if self.reduction == "mean":
            loss = loss.sum() / (target != self.ignore_index).sum()
        elif self.reduction == "sum":
            loss = loss.sum()
        else:
            loss = loss

        if not self.return_z_loss:
            return loss

        if self.reduction == "mean":
            z_loss = z_loss.sum() / (target != self.ignore_index).sum()
        elif self.reduction == "sum":
            z_loss = z_loss.sum()
        else:
            z_loss = z_loss

        return loss, z_loss