File size: 17,003 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# Copyright (c) 2023, Tri Dao.

import json
import math
import os
import re
from collections import OrderedDict
from pathlib import Path
from typing import Dict, List, Union

import torch
import torch.nn.functional as F
from sentencepiece import SentencePieceProcessor
from transformers import GPT2Config, LlamaConfig

from einops import rearrange


def remap_state_dict_meta_llama(

    state_dict: Dict[str, torch.Tensor], config: GPT2Config

) -> Dict[str, torch.Tensor]:
    """Convert the state_dict in Meta format to standard GPT format.



    This function modifies state_dict in place.

    """

    def key_mapping_layers(key):
        return f"transformer.{key}" if not key.startswith("output.") else key

    state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())

    # Word embedding
    def key_mapping_emb(key):
        return re.sub(
            r"^transformer.tok_embeddings.", "transformer.embeddings.word_embeddings.", key
        )

    state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = (
        math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
    )
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )
    if getattr(config, "tie_word_embeddings"):
        state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
    else:
        output_embeddings = state_dict.pop("output.weight")
        # Need to recompute vocab_size since LLaMa shards the word embeddings and output embeddings
        # differently.
        vocab_size = (
            math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
            * pad_vocab_size_multiple
        )
        # It's possible that vocab_size is padded to be a multiple of 8, for example.
        state_dict["lm_head.weight"] = F.pad(
            output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
        )

    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r"^transformer.norm.", r"transformer.ln_f.", key)
        key = re.sub(
            r"^transformer.layers.(\d+).attention_norm.",
            r"transformer.layers.\1.norm1.",
            key,
        )
        key = re.sub(r"^transformer.layers.(\d+).ffn_norm.", r"transformer.layers.\1.norm2.", key)
        return key

    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    # MLP
    for l in range(config.n_layer):
        w1 = state_dict.pop(f"transformer.layers.{l}.feed_forward.w1.weight")
        w3 = state_dict.pop(f"transformer.layers.{l}.feed_forward.w3.weight")
        # Our ordering is different
        state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat([w3, w1], dim=0)

    def key_mapping_mlp(key):
        return re.sub(
            r"^transformer.layers.(\d+).feed_forward.w2.",
            r"transformer.layers.\1.mlp.fc2.",
            key,
        )

    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    for l in range(config.n_layer):
        Wq = state_dict.pop(f"transformer.layers.{l}.attention.wq.weight")
        Wk = state_dict.pop(f"transformer.layers.{l}.attention.wk.weight")
        Wv = state_dict.pop(f"transformer.layers.{l}.attention.wv.weight")
        state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
        # We don't store these
        state_dict.pop(f"transformer.layers.{l}.attention.inner_attention.rope.freqs", None)

    def key_mapping_attn(key):
        return re.sub(
            r"^transformer.layers.(\d+).attention.wo.",
            r"transformer.layers.\1.mixer.out_proj.",
            key,
        )

    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    state_dict.pop("transformer.rope.freqs", None)

    return state_dict


def remap_state_dict_hf_llama(

    state_dict: Dict[str, torch.Tensor], config: GPT2Config

) -> Dict[str, torch.Tensor]:
    """Convert the state_dict in Hugging Face format to standard GPT format.



    This function modifies state_dict in place.

    """

    # Embedding
    def key_mapping_emb(key):
        return re.sub(r"^model.embed_tokens.", "transformer.embeddings.word_embeddings.", key)

    state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = (
        math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
    )
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )

    # LM head
    if getattr(config, "tie_word_embeddings"):
        state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
    else:
        output_embeddings = state_dict.pop("lm_head.weight")
        # Need to recompute vocab_size since LLaMa shards the word embeddings and output embeddings
        # differently.
        vocab_size = (
            math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
            * pad_vocab_size_multiple
        )
        # It's possible that vocab_size is padded to be a multiple of 8, for example.
        state_dict["lm_head.weight"] = F.pad(
            output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
        )

    # MLP
    for l in range(config.n_layer):
        # Fusing weights this way based on difference in the following:
        # https://github.com/huggingface/transformers/blob/b42010bb1d3cbf262d27e0a328661885be46dfdb/src/transformers/models/llama/modeling_llama.py#L220
        # https://github.com/Dao-AILab/flash-attention/blob/c60851a8253257eb970e06a022c82517a8033e8c/flash_attn/modules/mlp.py#L115
        w1 = state_dict.pop(f"model.layers.{l}.mlp.gate_proj.weight")
        w3 = state_dict.pop(f"model.layers.{l}.mlp.up_proj.weight")
        state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat([w3, w1], dim=0)

    def key_mapping_mlp(key):
        return re.sub(
            r"^model.layers.(\d+).mlp.down_proj.",
            r"transformer.layers.\1.mlp.fc2.",
            key,
        )

    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r"^model.norm.", r"transformer.ln_f.", key)
        key = re.sub(
            r"^model.layers.(\d+).input_layernorm.",
            r"transformer.layers.\1.norm1.",
            key,
        )
        key = re.sub(
            r"^model.layers.(\d+).post_attention_layernorm.",
            r"transformer.layers.\1.norm2.",
            key,
        )
        return key

    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    def inv_permute(w):
        # Inverse of permute implemented in:
        # https://github.com/huggingface/transformers/blob/b42010bb1d3cbf262d27e0a328661885be46dfdb/src/transformers/models/llama/convert_llama_weights_to_hf.py#L114
        return rearrange(
            w, "(h two d) n -> (h d two) n", d=config.n_embd // config.n_head // 2, two=2
        )

    # Attention
    for l in range(config.n_layer):
        Wq = state_dict.pop(f"model.layers.{l}.self_attn.q_proj.weight")
        Wk = state_dict.pop(f"model.layers.{l}.self_attn.k_proj.weight")
        Wv = state_dict.pop(f"model.layers.{l}.self_attn.v_proj.weight")

        state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat(
            [inv_permute(Wq), inv_permute(Wk), Wv], dim=0
        )
        # We don't store these
        state_dict.pop(f"model.layers.{l}.self_attn.rotary_emb.inv_freq", None)

    def key_mapping_attn(key):
        return re.sub(
            r"^model.layers.(\d+).self_attn.o_proj.",
            r"transformer.layers.\1.mixer.out_proj.",
            key,
        )

    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    return state_dict


def inv_remap_state_dict_hf_llama(

    state_dict: Dict[str, torch.Tensor], config: GPT2Config

) -> Dict[str, torch.Tensor]:
    """Convert the state_dict in standard GPT format to Hugging Face format.



    This function is meant to be the inverse of remap_state_dict_hf_llama, up to a

    multiplier pad in the embedding and lm_head. That is if the original embedding

    isn't a multiple of pad_vocab_size_multiple, then

    inv_remap_state_dict_hf_llama(remap_state_dict_hf_llama(state_dict)) != state_dict.



    This function modifies state_dict in place.

    """

    # Embedding
    def key_mapping_emb(key):
        return re.sub(r"^transformer.embeddings.word_embeddings.", "model.embed_tokens.", key)

    state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop("model.embed_tokens.weight")
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = (
        math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
    )
    state_dict["model.embed_tokens.weight"] = F.pad(
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )

    # LM head
    if getattr(config, "tie_word_embeddings"):
        state_dict["lm_head.weight"] = state_dict["model.embed_tokens.weight"]
    else:
        output_embeddings = state_dict.pop("lm_head.weight")
        vocab_size = (
            math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
            * pad_vocab_size_multiple
        )
        state_dict["lm_head.weight"] = F.pad(
            output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
        )

    # MLP
    for l in range(config.n_layer):
        w3, w1 = torch.chunk(
            state_dict.pop(f"transformer.layers.{l}.mlp.fc1.weight"), chunks=2, dim=0
        )
        state_dict[f"model.layers.{l}.mlp.gate_proj.weight"] = w1
        state_dict[f"model.layers.{l}.mlp.up_proj.weight"] = w3

    def key_mapping_mlp(key):
        return re.sub(
            r"^transformer.layers.(\d+).mlp.fc2.",
            r"model.layers.\1.mlp.down_proj.",
            key,
        )

    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r"^transformer.ln_f.", r"model.norm.", key)
        key = re.sub(
            r"^transformer.layers.(\d+).norm1.",
            r"model.layers.\1.input_layernorm.",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).norm2.",
            r"model.layers.\1.post_attention_layernorm.",
            key,
        )
        return key

    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    def permute(w):
        return rearrange(
            w, "(h d two) n -> (h two d) n", d=config.n_embd // config.n_head // 2, two=2
        )

    n_head = config.n_head
    n_head_kv = getattr(config, "n_head_kv", n_head)

    embed_dim = config.hidden_size
    head_dim = embed_dim // n_head

    q_dim = n_head * head_dim
    k_dim = v_dim = n_head_kv * head_dim

    # Attention
    for l in range(config.n_layer):
        Wqkv = state_dict.pop(f"transformer.layers.{l}.mixer.Wqkv.weight")
        Wq = Wqkv[:q_dim]
        Wk = Wqkv[q_dim : q_dim + k_dim]
        Wv = Wqkv[q_dim + k_dim : q_dim + k_dim + v_dim]
        state_dict[f"model.layers.{l}.self_attn.q_proj.weight"] = permute(Wq)
        state_dict[f"model.layers.{l}.self_attn.k_proj.weight"] = permute(Wk)
        state_dict[f"model.layers.{l}.self_attn.v_proj.weight"] = Wv
        state_dict.pop(f"transformer.layers.{l}.attention.inner_attention.rope.freqs", None)

    def key_mapping_attn(key):
        return re.sub(
            r"^transformer.layers.(\d+).mixer.out_proj.",
            r"model.layers.\1.self_attn.o_proj.",
            key,
        )

    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    return state_dict


def config_from_meta_checkpoint(

    checkpoint_path: Union[str, os.PathLike], model_name: str

) -> LlamaConfig:
    """Load a LlamaConfig from a checkpoint path."""
    with open(Path(checkpoint_path) / model_name / "params.json") as f:
        params = json.load(f)
    config = LlamaConfig(
        hidden_size=params["dim"],
        intermediate_size=None,
        num_attention_heads=params["n_heads"],
        num_hidden_layers=params["n_layers"],
        rms_norm_eps=params["norm_eps"],
        num_key_value_heads=params.get("n_kv_heads", None),
    )
    multiple_of = params.get("multiple_of", 1)
    ffn_dim_multiplier = params.get("ffn_dim_multiplier", None)

    # Compute the hidden dimension of the MLP
    # https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/model.py#L224
    intermediate_size = 4 * config.hidden_size
    # https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/model.py#L195-L199
    intermediate_size = int(2 * intermediate_size / 3)
    # custom dim factor multiplier
    if ffn_dim_multiplier is not None:
        intermediate_size = int(ffn_dim_multiplier * intermediate_size)
    intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of)

    config.intermediate_size = intermediate_size
    if "rope_theta" in params:
        config.rotary_emb_base = params["rope_theta"]
    config.vocab_size = 32000
    # some CodeLLaMa have vocab_size 32000, some 32016
    # Sadly it's not specified in the `params.json` file :(
    tokenizer = Path(checkpoint_path) / model_name / "tokenizer.model"
    if tokenizer.is_file():
        config.vocab_size = SentencePieceProcessor(str(tokenizer)).vocab_size()
    return config


def config_from_hf_checkpoint(

    checkpoint_path: Union[str, os.PathLike], model_name: str

) -> LlamaConfig:
    return LlamaConfig.from_pretrained(Path(checkpoint_path) / f"{model_name}-hf" / "config.json")


def config_from_checkpoint(

    checkpoint_path: Union[str, os.PathLike], model_name: str, checkpoint_format="meta"

) -> LlamaConfig:
    if checkpoint_format == "meta":
        return config_from_meta_checkpoint(checkpoint_path, model_name)
    else:
        return config_from_hf_checkpoint(checkpoint_path, model_name)


def state_dicts_from_checkpoint(

    checkpoint_path: Union[str, os.PathLike], model_name: str

) -> List[dict]:
    # Need to sort, otherwise we mess up the ordering and the weights are wrong
    return [
        torch.load(path, map_location="cpu")
        for path in sorted((Path(checkpoint_path) / model_name).glob("consolidated.*.pth"))
    ]


def llama_config_to_gpt2_config(llama_config: LlamaConfig) -> GPT2Config:
    return GPT2Config(
        vocab_size=llama_config.vocab_size,
        n_positions=0,  # No absolute position embedding
        n_embd=llama_config.hidden_size,
        n_layer=llama_config.num_hidden_layers,
        n_head=llama_config.num_attention_heads,
        n_inner=llama_config.intermediate_size,
        activation_function="swiglu",  # Hardcode since HF calls it 'silu'
        # Llama doesn't have dropout, idk if it's because they only release the inference code
        resid_pdrop=0.0,
        embd_pdrop=0.0,
        attn_pdrop=0.0,
        layer_norm_epsilon=llama_config.rms_norm_eps,
        initializer_range=llama_config.initializer_range,
        bos_token_id=llama_config.bos_token_id,
        eos_token_id=llama_config.eos_token_id,
        # These are new arguments not in the original GPT2Config
        pad_token_id=llama_config.pad_token_id,  # Idk if this does anything
        rms_norm=True,
        rotary_emb_fraction=1.0,
        rotary_emb_interleaved=True,
        tie_word_embeddings=False,
        qkv_proj_bias=False,
        out_proj_bias=False,
        mlp_fc1_bias=False,
        mlp_fc2_bias=False,
        rotary_emb_base=getattr(llama_config, "rotary_emb_base", 10000.0),
        n_head_kv=llama_config.num_key_value_heads,
    )