Spaces:
Sleeping
Sleeping
File size: 17,003 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
# Copyright (c) 2023, Tri Dao.
import json
import math
import os
import re
from collections import OrderedDict
from pathlib import Path
from typing import Dict, List, Union
import torch
import torch.nn.functional as F
from sentencepiece import SentencePieceProcessor
from transformers import GPT2Config, LlamaConfig
from einops import rearrange
def remap_state_dict_meta_llama(
state_dict: Dict[str, torch.Tensor], config: GPT2Config
) -> Dict[str, torch.Tensor]:
"""Convert the state_dict in Meta format to standard GPT format.
This function modifies state_dict in place.
"""
def key_mapping_layers(key):
return f"transformer.{key}" if not key.startswith("output.") else key
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
# Word embedding
def key_mapping_emb(key):
return re.sub(
r"^transformer.tok_embeddings.", "transformer.embeddings.word_embeddings.", key
)
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
# It's possible that vocab_size is padded to be a multiple of 8, for example.
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
vocab_size = (
math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
)
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
)
if getattr(config, "tie_word_embeddings"):
state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
else:
output_embeddings = state_dict.pop("output.weight")
# Need to recompute vocab_size since LLaMa shards the word embeddings and output embeddings
# differently.
vocab_size = (
math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
* pad_vocab_size_multiple
)
# It's possible that vocab_size is padded to be a multiple of 8, for example.
state_dict["lm_head.weight"] = F.pad(
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
)
# LayerNorm
def key_mapping_ln(key):
key = re.sub(r"^transformer.norm.", r"transformer.ln_f.", key)
key = re.sub(
r"^transformer.layers.(\d+).attention_norm.",
r"transformer.layers.\1.norm1.",
key,
)
key = re.sub(r"^transformer.layers.(\d+).ffn_norm.", r"transformer.layers.\1.norm2.", key)
return key
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
# MLP
for l in range(config.n_layer):
w1 = state_dict.pop(f"transformer.layers.{l}.feed_forward.w1.weight")
w3 = state_dict.pop(f"transformer.layers.{l}.feed_forward.w3.weight")
# Our ordering is different
state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat([w3, w1], dim=0)
def key_mapping_mlp(key):
return re.sub(
r"^transformer.layers.(\d+).feed_forward.w2.",
r"transformer.layers.\1.mlp.fc2.",
key,
)
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
# Attention
for l in range(config.n_layer):
Wq = state_dict.pop(f"transformer.layers.{l}.attention.wq.weight")
Wk = state_dict.pop(f"transformer.layers.{l}.attention.wk.weight")
Wv = state_dict.pop(f"transformer.layers.{l}.attention.wv.weight")
state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
# We don't store these
state_dict.pop(f"transformer.layers.{l}.attention.inner_attention.rope.freqs", None)
def key_mapping_attn(key):
return re.sub(
r"^transformer.layers.(\d+).attention.wo.",
r"transformer.layers.\1.mixer.out_proj.",
key,
)
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
state_dict.pop("transformer.rope.freqs", None)
return state_dict
def remap_state_dict_hf_llama(
state_dict: Dict[str, torch.Tensor], config: GPT2Config
) -> Dict[str, torch.Tensor]:
"""Convert the state_dict in Hugging Face format to standard GPT format.
This function modifies state_dict in place.
"""
# Embedding
def key_mapping_emb(key):
return re.sub(r"^model.embed_tokens.", "transformer.embeddings.word_embeddings.", key)
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
# It's possible that vocab_size is padded to be a multiple of 8, for example.
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
vocab_size = (
math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
)
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
)
# LM head
if getattr(config, "tie_word_embeddings"):
state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
else:
output_embeddings = state_dict.pop("lm_head.weight")
# Need to recompute vocab_size since LLaMa shards the word embeddings and output embeddings
# differently.
vocab_size = (
math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
* pad_vocab_size_multiple
)
# It's possible that vocab_size is padded to be a multiple of 8, for example.
state_dict["lm_head.weight"] = F.pad(
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
)
# MLP
for l in range(config.n_layer):
# Fusing weights this way based on difference in the following:
# https://github.com/huggingface/transformers/blob/b42010bb1d3cbf262d27e0a328661885be46dfdb/src/transformers/models/llama/modeling_llama.py#L220
# https://github.com/Dao-AILab/flash-attention/blob/c60851a8253257eb970e06a022c82517a8033e8c/flash_attn/modules/mlp.py#L115
w1 = state_dict.pop(f"model.layers.{l}.mlp.gate_proj.weight")
w3 = state_dict.pop(f"model.layers.{l}.mlp.up_proj.weight")
state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat([w3, w1], dim=0)
def key_mapping_mlp(key):
return re.sub(
r"^model.layers.(\d+).mlp.down_proj.",
r"transformer.layers.\1.mlp.fc2.",
key,
)
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
# LayerNorm
def key_mapping_ln(key):
key = re.sub(r"^model.norm.", r"transformer.ln_f.", key)
key = re.sub(
r"^model.layers.(\d+).input_layernorm.",
r"transformer.layers.\1.norm1.",
key,
)
key = re.sub(
r"^model.layers.(\d+).post_attention_layernorm.",
r"transformer.layers.\1.norm2.",
key,
)
return key
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
def inv_permute(w):
# Inverse of permute implemented in:
# https://github.com/huggingface/transformers/blob/b42010bb1d3cbf262d27e0a328661885be46dfdb/src/transformers/models/llama/convert_llama_weights_to_hf.py#L114
return rearrange(
w, "(h two d) n -> (h d two) n", d=config.n_embd // config.n_head // 2, two=2
)
# Attention
for l in range(config.n_layer):
Wq = state_dict.pop(f"model.layers.{l}.self_attn.q_proj.weight")
Wk = state_dict.pop(f"model.layers.{l}.self_attn.k_proj.weight")
Wv = state_dict.pop(f"model.layers.{l}.self_attn.v_proj.weight")
state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat(
[inv_permute(Wq), inv_permute(Wk), Wv], dim=0
)
# We don't store these
state_dict.pop(f"model.layers.{l}.self_attn.rotary_emb.inv_freq", None)
def key_mapping_attn(key):
return re.sub(
r"^model.layers.(\d+).self_attn.o_proj.",
r"transformer.layers.\1.mixer.out_proj.",
key,
)
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
return state_dict
def inv_remap_state_dict_hf_llama(
state_dict: Dict[str, torch.Tensor], config: GPT2Config
) -> Dict[str, torch.Tensor]:
"""Convert the state_dict in standard GPT format to Hugging Face format.
This function is meant to be the inverse of remap_state_dict_hf_llama, up to a
multiplier pad in the embedding and lm_head. That is if the original embedding
isn't a multiple of pad_vocab_size_multiple, then
inv_remap_state_dict_hf_llama(remap_state_dict_hf_llama(state_dict)) != state_dict.
This function modifies state_dict in place.
"""
# Embedding
def key_mapping_emb(key):
return re.sub(r"^transformer.embeddings.word_embeddings.", "model.embed_tokens.", key)
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
word_embeddings = state_dict.pop("model.embed_tokens.weight")
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
vocab_size = (
math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
)
state_dict["model.embed_tokens.weight"] = F.pad(
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
)
# LM head
if getattr(config, "tie_word_embeddings"):
state_dict["lm_head.weight"] = state_dict["model.embed_tokens.weight"]
else:
output_embeddings = state_dict.pop("lm_head.weight")
vocab_size = (
math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
* pad_vocab_size_multiple
)
state_dict["lm_head.weight"] = F.pad(
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
)
# MLP
for l in range(config.n_layer):
w3, w1 = torch.chunk(
state_dict.pop(f"transformer.layers.{l}.mlp.fc1.weight"), chunks=2, dim=0
)
state_dict[f"model.layers.{l}.mlp.gate_proj.weight"] = w1
state_dict[f"model.layers.{l}.mlp.up_proj.weight"] = w3
def key_mapping_mlp(key):
return re.sub(
r"^transformer.layers.(\d+).mlp.fc2.",
r"model.layers.\1.mlp.down_proj.",
key,
)
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
# LayerNorm
def key_mapping_ln(key):
key = re.sub(r"^transformer.ln_f.", r"model.norm.", key)
key = re.sub(
r"^transformer.layers.(\d+).norm1.",
r"model.layers.\1.input_layernorm.",
key,
)
key = re.sub(
r"^transformer.layers.(\d+).norm2.",
r"model.layers.\1.post_attention_layernorm.",
key,
)
return key
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
def permute(w):
return rearrange(
w, "(h d two) n -> (h two d) n", d=config.n_embd // config.n_head // 2, two=2
)
n_head = config.n_head
n_head_kv = getattr(config, "n_head_kv", n_head)
embed_dim = config.hidden_size
head_dim = embed_dim // n_head
q_dim = n_head * head_dim
k_dim = v_dim = n_head_kv * head_dim
# Attention
for l in range(config.n_layer):
Wqkv = state_dict.pop(f"transformer.layers.{l}.mixer.Wqkv.weight")
Wq = Wqkv[:q_dim]
Wk = Wqkv[q_dim : q_dim + k_dim]
Wv = Wqkv[q_dim + k_dim : q_dim + k_dim + v_dim]
state_dict[f"model.layers.{l}.self_attn.q_proj.weight"] = permute(Wq)
state_dict[f"model.layers.{l}.self_attn.k_proj.weight"] = permute(Wk)
state_dict[f"model.layers.{l}.self_attn.v_proj.weight"] = Wv
state_dict.pop(f"transformer.layers.{l}.attention.inner_attention.rope.freqs", None)
def key_mapping_attn(key):
return re.sub(
r"^transformer.layers.(\d+).mixer.out_proj.",
r"model.layers.\1.self_attn.o_proj.",
key,
)
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
return state_dict
def config_from_meta_checkpoint(
checkpoint_path: Union[str, os.PathLike], model_name: str
) -> LlamaConfig:
"""Load a LlamaConfig from a checkpoint path."""
with open(Path(checkpoint_path) / model_name / "params.json") as f:
params = json.load(f)
config = LlamaConfig(
hidden_size=params["dim"],
intermediate_size=None,
num_attention_heads=params["n_heads"],
num_hidden_layers=params["n_layers"],
rms_norm_eps=params["norm_eps"],
num_key_value_heads=params.get("n_kv_heads", None),
)
multiple_of = params.get("multiple_of", 1)
ffn_dim_multiplier = params.get("ffn_dim_multiplier", None)
# Compute the hidden dimension of the MLP
# https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/model.py#L224
intermediate_size = 4 * config.hidden_size
# https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/model.py#L195-L199
intermediate_size = int(2 * intermediate_size / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
intermediate_size = int(ffn_dim_multiplier * intermediate_size)
intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of)
config.intermediate_size = intermediate_size
if "rope_theta" in params:
config.rotary_emb_base = params["rope_theta"]
config.vocab_size = 32000
# some CodeLLaMa have vocab_size 32000, some 32016
# Sadly it's not specified in the `params.json` file :(
tokenizer = Path(checkpoint_path) / model_name / "tokenizer.model"
if tokenizer.is_file():
config.vocab_size = SentencePieceProcessor(str(tokenizer)).vocab_size()
return config
def config_from_hf_checkpoint(
checkpoint_path: Union[str, os.PathLike], model_name: str
) -> LlamaConfig:
return LlamaConfig.from_pretrained(Path(checkpoint_path) / f"{model_name}-hf" / "config.json")
def config_from_checkpoint(
checkpoint_path: Union[str, os.PathLike], model_name: str, checkpoint_format="meta"
) -> LlamaConfig:
if checkpoint_format == "meta":
return config_from_meta_checkpoint(checkpoint_path, model_name)
else:
return config_from_hf_checkpoint(checkpoint_path, model_name)
def state_dicts_from_checkpoint(
checkpoint_path: Union[str, os.PathLike], model_name: str
) -> List[dict]:
# Need to sort, otherwise we mess up the ordering and the weights are wrong
return [
torch.load(path, map_location="cpu")
for path in sorted((Path(checkpoint_path) / model_name).glob("consolidated.*.pth"))
]
def llama_config_to_gpt2_config(llama_config: LlamaConfig) -> GPT2Config:
return GPT2Config(
vocab_size=llama_config.vocab_size,
n_positions=0, # No absolute position embedding
n_embd=llama_config.hidden_size,
n_layer=llama_config.num_hidden_layers,
n_head=llama_config.num_attention_heads,
n_inner=llama_config.intermediate_size,
activation_function="swiglu", # Hardcode since HF calls it 'silu'
# Llama doesn't have dropout, idk if it's because they only release the inference code
resid_pdrop=0.0,
embd_pdrop=0.0,
attn_pdrop=0.0,
layer_norm_epsilon=llama_config.rms_norm_eps,
initializer_range=llama_config.initializer_range,
bos_token_id=llama_config.bos_token_id,
eos_token_id=llama_config.eos_token_id,
# These are new arguments not in the original GPT2Config
pad_token_id=llama_config.pad_token_id, # Idk if this does anything
rms_norm=True,
rotary_emb_fraction=1.0,
rotary_emb_interleaved=True,
tie_word_embeddings=False,
qkv_proj_bias=False,
out_proj_bias=False,
mlp_fc1_bias=False,
mlp_fc2_bias=False,
rotary_emb_base=getattr(llama_config, "rotary_emb_base", 10000.0),
n_head_kv=llama_config.num_key_value_heads,
)
|