Spaces:
Sleeping
Sleeping
File size: 14,447 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# Copyright (c) 2022, Tri Dao.
# Inspired by / adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
import math
import re
from collections import OrderedDict
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from timm.models.helpers import named_apply
from torch.nn.init import trunc_normal_
from torchvision.ops import StochasticDepth
from flash_attn.layers.patch_embed import PatchEmbed
from flash_attn.modules.block import Block
from flash_attn.modules.mha import MHA
from flash_attn.modules.mlp import FusedMLP, Mlp
try:
from flash_attn.ops.triton.layer_norm import layer_norm_fn
except ImportError:
layer_norm_fn = None
def create_mixer_cls(
num_heads, qkv_bias, attn_drop, use_flash_attn, fused_bias_fc, cross_attn=False
):
mixer_cls = partial(
MHA,
num_heads=num_heads,
cross_attn=cross_attn,
qkv_proj_bias=qkv_bias,
dropout=attn_drop,
fused_bias_fc=fused_bias_fc,
use_flash_attn=use_flash_attn,
)
return mixer_cls
def create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_mlp):
inner_dim = int(embed_dim * mlp_ratio)
if not fused_mlp:
mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=act_layer())
else:
mlp_cls = partial(FusedMLP, hidden_features=inner_dim)
return mlp_cls
def create_block(
embed_dim,
num_heads,
mlp_ratio,
qkv_bias,
drop_rate,
attn_drop_rate,
drop_path1,
drop_path2,
norm_layer,
act_layer,
use_flash_attn,
fused_bias_fc,
fused_mlp,
fused_dropout_add_ln,
layer_idx=None,
n_layer=None,
last_layer_subset=False,
):
mixer_cls = create_mixer_cls(
num_heads,
qkv_bias,
attn_drop_rate,
use_flash_attn,
fused_bias_fc,
cross_attn=(last_layer_subset and layer_idx == n_layer - 1),
)
mlp_cls = create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_mlp)
# TD [2022-10-15]: Force residual in fp32 in case of DeepSpeed
block = Block(
embed_dim,
mixer_cls,
mlp_cls,
norm_cls=norm_layer,
prenorm=True,
resid_dropout1=drop_rate,
resid_dropout2=drop_rate,
drop_path1=drop_path1,
drop_path2=drop_path2,
fused_dropout_add_ln=fused_dropout_add_ln,
residual_in_fp32=True,
)
return block
class VisionTransformer(nn.Module):
"""Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
- https://arxiv.org/abs/2010.11929
"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
global_pool="token",
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
init_values=None,
class_token=True,
no_embed_class=False,
pre_norm=False,
fc_norm=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
weight_init="",
embed_layer=PatchEmbed,
norm_layer=None,
act_layer=None,
use_flash_attn=False,
fused_bias_fc=False,
fused_mlp=False,
fused_dropout_add_ln=False,
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
global_pool (str): type of global pooling for final sequence (default: 'token')
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
init_values: (float): layer-scale init values
class_token (bool): use class token
fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None)
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
weight_init (str): weight init scheme
embed_layer (nn.Module): patch embedding layer
norm_layer: (nn.Module): normalization layer
act_layer: (nn.Module): MLP activation layer
"""
super().__init__()
assert global_pool == "token", "Only support pooling with CLS token"
assert class_token
assert init_values is None, "LayerScale is not supported yet"
assert weight_init == ""
assert fc_norm is None
# pre_norm seems redundant, as there's a LayerNorm right at the start of each block, idk
assert not pre_norm
use_fc_norm = global_pool == "avg" if fc_norm is None else fc_norm
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.num_classes = num_classes
self.global_pool = global_pool
self.num_features = (
self.embed_dim
) = embed_dim # num_features for consistency with other models
self.num_prefix_tokens = 1 if class_token else 0
self.no_embed_class = no_embed_class
patch_embed_extra_kwargs = (
{"fused_bias_fc": fused_bias_fc} if embed_layer is PatchEmbed else {}
)
self.patch_embed = embed_layer(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP)
**patch_embed_extra_kwargs,
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
# We change the order of dropout, residual and layer norm:
# Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
# Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
# the main branch (output of MLP). The model definition is unchanged, but the mapping of the
# nn.Dropout probabilities are changed.
# This is for performance reason: we can fuse dropout + add + layer_norm.
self.blocks = nn.ModuleList(
[
create_block(
embed_dim,
num_heads,
mlp_ratio,
qkv_bias,
drop_rate,
attn_drop_rate,
drop_path1=dpr[i - 1] if i > 0 else 0.0,
drop_path2=dpr[i],
norm_layer=norm_layer,
act_layer=act_layer,
use_flash_attn=use_flash_attn,
fused_bias_fc=fused_bias_fc,
fused_mlp=fused_mlp,
fused_dropout_add_ln=fused_dropout_add_ln,
layer_idx=i,
n_layer=depth,
last_layer_subset=(global_pool == "token"),
)
for i in range(depth)
]
)
self.dropout = nn.Dropout(p=drop_rate)
self.drop_path = StochasticDepth(p=dpr[-1], mode="row")
self.norm = norm_layer(embed_dim)
self.fused_dropout_add_ln = fused_dropout_add_ln
if self.fused_dropout_add_ln and layer_norm_fn is None:
raise ImportError("Triton is not installed")
# Classifier Head
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.init_weights(weight_init)
def init_weights(self, mode=""):
assert mode == ""
trunc_normal_(self.pos_embed, std=0.02)
if self.cls_token is not None:
nn.init.normal_(self.cls_token, std=1e-6)
named_apply(init_weights_vit_timm, self)
def _init_weights(self, m):
# this fn left here for compat with downstream users
init_weights_vit_timm(m)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token"}
def _pos_embed(self, x):
if self.no_embed_class:
# deit-3, updated JAX (big vision)
# position embedding does not overlap with class token, add then concat
x = x + self.pos_embed
if self.cls_token is not None:
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
else:
# original timm, JAX, and deit vit impl
# pos_embed has entry for class token, concat then add
if self.cls_token is not None:
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = x + self.pos_embed
return x
def forward_features(self, x, all_tokens=True):
"""
If all_tokens==False and self.global_pool == 'token', we only return the features for the
cls token.
"""
x = self.patch_embed(x)
hidden_states = self._pos_embed(x)
residual = None
if self.global_pool != "token" or all_tokens:
# if True:
for block in self.blocks:
hidden_states, residual = block(hidden_states, residual)
else:
for block in self.blocks[:-1]:
hidden_states, residual = block(hidden_states, residual)
# For the last layer, we only want the 1st token of the output. So we do cross-attention
# where the query is the 1st token and the key/value is the whole sequence.
hidden_states, residual = self.blocks[-1](
hidden_states, residual, mixer_subset=slice(0, 1)
)
if not self.fused_dropout_add_ln:
residual = self.drop_path(self.dropout(hidden_states)) + residual
hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype))
else:
if self.drop_path.p == 0 or not self.training:
rowscale = None
else:
rowscale = self.drop_path(
torch.ones(
hidden_states.shape[:-1],
device=hidden_states.device,
dtype=hidden_states.dtype,
)
)
# Set prenorm=False here since we don't need to the residual
hidden_states = layer_norm_fn(
hidden_states,
self.norm.weight,
self.norm.bias,
residual=residual,
eps=self.norm.eps,
dropout_p=self.dropout.p if self.training else 0.0,
rowscale=rowscale,
prenorm=False,
)
return hidden_states
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool:
x = x[:, self.num_prefix_tokens :].mean(dim=1) if self.global_pool == "avg" else x[:, 0]
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x, all_tokens=False)
x = self.forward_head(x)
return x
def load_state_dict(self, state_dict, strict=True):
patch_embed_weight = state_dict["patch_embed.proj.weight"]
if patch_embed_weight.dim() == 4:
# convert from Conv2d to Linear
state_dict["patch_embed.proj.weight"] = rearrange(
patch_embed_weight, "o c h w -> o (c h w)"
)
def key_mapping_attn(key):
key = re.sub(r"^blocks.(\d+).attn.qkv.", r"blocks.\1.mixer.Wqkv.", key)
key = re.sub(r"^blocks.(\d+).attn.proj.", r"blocks.\1.mixer.out_proj.", key)
return key
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
n_layer = len(self.blocks)
# Convert from Wqkv to Wq and Wkv for cross attention (last layer)
if (
self.blocks[-1].mixer.cross_attn
and f"blocks.{n_layer - 1}.mixer.Wqkv.weight" in state_dict
):
Wqkv = state_dict.pop(f"blocks.{n_layer - 1}.mixer.Wqkv.weight")
bqkv = state_dict.pop(f"blocks.{n_layer - 1}.mixer.Wqkv.bias")
state_dict[f"blocks.{n_layer - 1}.mixer.Wq.weight"] = Wqkv[: self.embed_dim]
state_dict[f"blocks.{n_layer - 1}.mixer.Wkv.weight"] = Wqkv[self.embed_dim :]
state_dict[f"blocks.{n_layer - 1}.mixer.Wq.bias"] = bqkv[: self.embed_dim]
state_dict[f"blocks.{n_layer - 1}.mixer.Wkv.bias"] = bqkv[self.embed_dim :]
return super().load_state_dict(state_dict, strict=strict)
def init_weights_vit_timm(module: nn.Module, name: str = ""):
"""ViT weight initialization, original timm impl (for reproducibility)"""
if isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif hasattr(module, "init_weights"):
module.init_weights()
def vit_base_patch16_224(pretrained=False, **kwargs):
"""ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
"""
assert not pretrained
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = VisionTransformer(**model_kwargs)
return model
|