File size: 14,447 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Copyright (c) 2022, Tri Dao.
# Inspired by / adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
import math
import re
from collections import OrderedDict
from copy import deepcopy
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from timm.models.helpers import named_apply
from torch.nn.init import trunc_normal_
from torchvision.ops import StochasticDepth

from flash_attn.layers.patch_embed import PatchEmbed
from flash_attn.modules.block import Block
from flash_attn.modules.mha import MHA
from flash_attn.modules.mlp import FusedMLP, Mlp

try:
    from flash_attn.ops.triton.layer_norm import layer_norm_fn
except ImportError:
    layer_norm_fn = None


def create_mixer_cls(

    num_heads, qkv_bias, attn_drop, use_flash_attn, fused_bias_fc, cross_attn=False

):
    mixer_cls = partial(
        MHA,
        num_heads=num_heads,
        cross_attn=cross_attn,
        qkv_proj_bias=qkv_bias,
        dropout=attn_drop,
        fused_bias_fc=fused_bias_fc,
        use_flash_attn=use_flash_attn,
    )
    return mixer_cls


def create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_mlp):
    inner_dim = int(embed_dim * mlp_ratio)
    if not fused_mlp:
        mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=act_layer())
    else:
        mlp_cls = partial(FusedMLP, hidden_features=inner_dim)
    return mlp_cls


def create_block(

    embed_dim,

    num_heads,

    mlp_ratio,

    qkv_bias,

    drop_rate,

    attn_drop_rate,

    drop_path1,

    drop_path2,

    norm_layer,

    act_layer,

    use_flash_attn,

    fused_bias_fc,

    fused_mlp,

    fused_dropout_add_ln,

    layer_idx=None,

    n_layer=None,

    last_layer_subset=False,

):
    mixer_cls = create_mixer_cls(
        num_heads,
        qkv_bias,
        attn_drop_rate,
        use_flash_attn,
        fused_bias_fc,
        cross_attn=(last_layer_subset and layer_idx == n_layer - 1),
    )
    mlp_cls = create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_mlp)
    # TD [2022-10-15]: Force residual in fp32 in case of DeepSpeed
    block = Block(
        embed_dim,
        mixer_cls,
        mlp_cls,
        norm_cls=norm_layer,
        prenorm=True,
        resid_dropout1=drop_rate,
        resid_dropout2=drop_rate,
        drop_path1=drop_path1,
        drop_path2=drop_path2,
        fused_dropout_add_ln=fused_dropout_add_ln,
        residual_in_fp32=True,
    )
    return block


class VisionTransformer(nn.Module):
    """Vision Transformer

    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`

        - https://arxiv.org/abs/2010.11929

    """

    def __init__(

        self,

        img_size=224,

        patch_size=16,

        in_chans=3,

        num_classes=1000,

        global_pool="token",

        embed_dim=768,

        depth=12,

        num_heads=12,

        mlp_ratio=4.0,

        qkv_bias=True,

        init_values=None,

        class_token=True,

        no_embed_class=False,

        pre_norm=False,

        fc_norm=None,

        drop_rate=0.0,

        attn_drop_rate=0.0,

        drop_path_rate=0.0,

        weight_init="",

        embed_layer=PatchEmbed,

        norm_layer=None,

        act_layer=None,

        use_flash_attn=False,

        fused_bias_fc=False,

        fused_mlp=False,

        fused_dropout_add_ln=False,

    ):
        """

        Args:

            img_size (int, tuple): input image size

            patch_size (int, tuple): patch size

            in_chans (int): number of input channels

            num_classes (int): number of classes for classification head

            global_pool (str): type of global pooling for final sequence (default: 'token')

            embed_dim (int): embedding dimension

            depth (int): depth of transformer

            num_heads (int): number of attention heads

            mlp_ratio (int): ratio of mlp hidden dim to embedding dim

            qkv_bias (bool): enable bias for qkv if True

            init_values: (float): layer-scale init values

            class_token (bool): use class token

            fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None)

            drop_rate (float): dropout rate

            attn_drop_rate (float): attention dropout rate

            drop_path_rate (float): stochastic depth rate

            weight_init (str): weight init scheme

            embed_layer (nn.Module): patch embedding layer

            norm_layer: (nn.Module): normalization layer

            act_layer: (nn.Module): MLP activation layer

        """
        super().__init__()
        assert global_pool == "token", "Only support pooling with CLS token"
        assert class_token
        assert init_values is None, "LayerScale is not supported yet"
        assert weight_init == ""
        assert fc_norm is None
        # pre_norm seems redundant, as there's a LayerNorm right at the start of each block, idk
        assert not pre_norm
        use_fc_norm = global_pool == "avg" if fc_norm is None else fc_norm
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.num_classes = num_classes
        self.global_pool = global_pool
        self.num_features = (
            self.embed_dim
        ) = embed_dim  # num_features for consistency with other models
        self.num_prefix_tokens = 1 if class_token else 0
        self.no_embed_class = no_embed_class

        patch_embed_extra_kwargs = (
            {"fused_bias_fc": fused_bias_fc} if embed_layer is PatchEmbed else {}
        )
        self.patch_embed = embed_layer(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            bias=not pre_norm,  # disable bias if pre-norm is used (e.g. CLIP)
            **patch_embed_extra_kwargs,
        )
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
        embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
        self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)

        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, depth)
        ]  # stochastic depth decay rule

        # We change the order of dropout, residual and layer norm:
        # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
        # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
        # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
        # nn.Dropout probabilities are changed.
        # This is for performance reason: we can fuse dropout + add + layer_norm.
        self.blocks = nn.ModuleList(
            [
                create_block(
                    embed_dim,
                    num_heads,
                    mlp_ratio,
                    qkv_bias,
                    drop_rate,
                    attn_drop_rate,
                    drop_path1=dpr[i - 1] if i > 0 else 0.0,
                    drop_path2=dpr[i],
                    norm_layer=norm_layer,
                    act_layer=act_layer,
                    use_flash_attn=use_flash_attn,
                    fused_bias_fc=fused_bias_fc,
                    fused_mlp=fused_mlp,
                    fused_dropout_add_ln=fused_dropout_add_ln,
                    layer_idx=i,
                    n_layer=depth,
                    last_layer_subset=(global_pool == "token"),
                )
                for i in range(depth)
            ]
        )

        self.dropout = nn.Dropout(p=drop_rate)
        self.drop_path = StochasticDepth(p=dpr[-1], mode="row")
        self.norm = norm_layer(embed_dim)

        self.fused_dropout_add_ln = fused_dropout_add_ln
        if self.fused_dropout_add_ln and layer_norm_fn is None:
            raise ImportError("Triton is not installed")

        # Classifier Head
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        self.init_weights(weight_init)

    def init_weights(self, mode=""):
        assert mode == ""
        trunc_normal_(self.pos_embed, std=0.02)
        if self.cls_token is not None:
            nn.init.normal_(self.cls_token, std=1e-6)
        named_apply(init_weights_vit_timm, self)

    def _init_weights(self, m):
        # this fn left here for compat with downstream users
        init_weights_vit_timm(m)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {"pos_embed", "cls_token"}

    def _pos_embed(self, x):
        if self.no_embed_class:
            # deit-3, updated JAX (big vision)
            # position embedding does not overlap with class token, add then concat
            x = x + self.pos_embed
            if self.cls_token is not None:
                x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
        else:
            # original timm, JAX, and deit vit impl
            # pos_embed has entry for class token, concat then add
            if self.cls_token is not None:
                x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
            x = x + self.pos_embed
        return x

    def forward_features(self, x, all_tokens=True):
        """

        If all_tokens==False and self.global_pool == 'token', we only return the features for the

        cls token.

        """
        x = self.patch_embed(x)
        hidden_states = self._pos_embed(x)
        residual = None
        if self.global_pool != "token" or all_tokens:
            # if True:
            for block in self.blocks:
                hidden_states, residual = block(hidden_states, residual)
        else:
            for block in self.blocks[:-1]:
                hidden_states, residual = block(hidden_states, residual)
            # For the last layer, we only want the 1st token of the output. So we do cross-attention
            # where the query is the 1st token and the key/value is the whole sequence.
            hidden_states, residual = self.blocks[-1](
                hidden_states, residual, mixer_subset=slice(0, 1)
            )
        if not self.fused_dropout_add_ln:
            residual = self.drop_path(self.dropout(hidden_states)) + residual
            hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype))
        else:
            if self.drop_path.p == 0 or not self.training:
                rowscale = None
            else:
                rowscale = self.drop_path(
                    torch.ones(
                        hidden_states.shape[:-1],
                        device=hidden_states.device,
                        dtype=hidden_states.dtype,
                    )
                )
            # Set prenorm=False here since we don't need to the residual
            hidden_states = layer_norm_fn(
                hidden_states,
                self.norm.weight,
                self.norm.bias,
                residual=residual,
                eps=self.norm.eps,
                dropout_p=self.dropout.p if self.training else 0.0,
                rowscale=rowscale,
                prenorm=False,
            )
        return hidden_states

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool:
            x = x[:, self.num_prefix_tokens :].mean(dim=1) if self.global_pool == "avg" else x[:, 0]
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x, all_tokens=False)
        x = self.forward_head(x)
        return x

    def load_state_dict(self, state_dict, strict=True):
        patch_embed_weight = state_dict["patch_embed.proj.weight"]
        if patch_embed_weight.dim() == 4:
            # convert from Conv2d to Linear
            state_dict["patch_embed.proj.weight"] = rearrange(
                patch_embed_weight, "o c h w -> o (c h w)"
            )

        def key_mapping_attn(key):
            key = re.sub(r"^blocks.(\d+).attn.qkv.", r"blocks.\1.mixer.Wqkv.", key)
            key = re.sub(r"^blocks.(\d+).attn.proj.", r"blocks.\1.mixer.out_proj.", key)
            return key

        state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
        n_layer = len(self.blocks)
        # Convert from Wqkv to Wq and Wkv for cross attention (last layer)
        if (
            self.blocks[-1].mixer.cross_attn
            and f"blocks.{n_layer - 1}.mixer.Wqkv.weight" in state_dict
        ):
            Wqkv = state_dict.pop(f"blocks.{n_layer - 1}.mixer.Wqkv.weight")
            bqkv = state_dict.pop(f"blocks.{n_layer - 1}.mixer.Wqkv.bias")
            state_dict[f"blocks.{n_layer - 1}.mixer.Wq.weight"] = Wqkv[: self.embed_dim]
            state_dict[f"blocks.{n_layer - 1}.mixer.Wkv.weight"] = Wqkv[self.embed_dim :]
            state_dict[f"blocks.{n_layer - 1}.mixer.Wq.bias"] = bqkv[: self.embed_dim]
            state_dict[f"blocks.{n_layer - 1}.mixer.Wkv.bias"] = bqkv[self.embed_dim :]
        return super().load_state_dict(state_dict, strict=strict)


def init_weights_vit_timm(module: nn.Module, name: str = ""):
    """ViT weight initialization, original timm impl (for reproducibility)"""
    if isinstance(module, nn.Linear):
        trunc_normal_(module.weight, std=0.02)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif hasattr(module, "init_weights"):
        module.init_weights()


def vit_base_patch16_224(pretrained=False, **kwargs):
    """ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).

    ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.

    """
    assert not pretrained
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = VisionTransformer(**model_kwargs)
    return model