File size: 8,909 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright (c) 2022, Tri Dao.

import torch
import torch.nn as nn
from einops import rearrange
from torch import Tensor

from flash_attn.utils.distributed import all_reduce, reduce_scatter


class GPT2Embeddings(nn.Module):
    def __init__(

        self,

        embed_dim,

        vocab_size,

        max_position_embeddings,

        padding_idx=None,

        word_embed_proj_dim=None,

        device=None,

        dtype=None,

    ):
        """

        If max_position_embeddings <= 0, there's no position embeddings

        If word_embe_proj_dim is not None (e.g., OPT-350m), we embed to that dimension

            the project up to embed_dim

        """
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        if word_embed_proj_dim is None:
            self.word_embeddings = nn.Embedding(
                vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs
            )
            self.project_in = None
        else:
            self.word_embeddings = nn.Embedding(
                vocab_size, word_embed_proj_dim, padding_idx=padding_idx, **factory_kwargs
            )
            self.project_in = nn.Linear(
                word_embed_proj_dim, embed_dim, bias=False, **factory_kwargs
            )
        self.max_position_embeddings = max_position_embeddings
        if self.max_position_embeddings > 0:
            self.position_embeddings = nn.Embedding(
                max_position_embeddings, embed_dim, **factory_kwargs
            )

    def forward(self, input_ids, position_ids=None):
        """

        input_ids: (batch, seqlen)

        position_ids: (batch, seqlen)

        """
        batch_size, seqlen = input_ids.shape
        embeddings = self.word_embeddings(input_ids)
        if self.project_in is not None:
            embeddings = self.project_in(embeddings)
        if self.max_position_embeddings > 0:
            if position_ids is None:
                position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
            position_embeddings = self.position_embeddings(position_ids)
            embeddings = embeddings + position_embeddings
        return embeddings


class BertEmbeddings(nn.Module):
    def __init__(

        self,

        embed_dim,

        vocab_size,

        max_position_embeddings,

        type_vocab_size,

        padding_idx=None,

        device=None,

        dtype=None,

    ):
        """

        If max_position_embeddings <= 0, there's no position embeddings

        If type_vocab_size <= 0, there's no token type embeddings

        """
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.word_embeddings = nn.Embedding(
            vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs
        )
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        if self.max_position_embeddings > 0:
            self.position_embeddings = nn.Embedding(
                max_position_embeddings, embed_dim, **factory_kwargs
            )
        if self.type_vocab_size > 0:
            self.token_type_embeddings = nn.Embedding(type_vocab_size, embed_dim, **factory_kwargs)

    def forward(self, input_ids, position_ids=None, token_type_ids=None):
        """

        input_ids: (batch, seqlen)

        position_ids: (batch, seqlen)

        token_type_ids: (batch, seqlen)

        """
        batch_size, seqlen = input_ids.shape
        embeddings = self.word_embeddings(input_ids)
        if self.max_position_embeddings > 0:
            if position_ids is None:
                position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
            position_embeddings = self.position_embeddings(position_ids)
            embeddings = embeddings + position_embeddings
        if self.type_vocab_size > 0:
            if token_type_ids is None:
                token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
            token_type_embeddings = self.token_type_embeddings(token_type_ids)
            embeddings = embeddings + token_type_embeddings
        return embeddings


class VocabParallelEmbedding(nn.Embedding):
    def __init__(self, num_embeddings, *args, process_group=None, padding_idx=None, **kwargs):
        self.process_group = process_group
        if process_group is not None:
            world_size = torch.distributed.get_world_size(process_group)
            if num_embeddings % world_size != 0:
                raise ValueError(
                    f"num_embeddings ({num_embeddings}) must be divisible by "
                    f"world_size ({world_size})"
                )
            if world_size > 1 and padding_idx is not None:
                raise RuntimeError("ParallelEmbedding does not support padding_idx")
        else:
            world_size = 1
        super().__init__(num_embeddings // world_size, *args, padding_idx=padding_idx, **kwargs)

    def forward(self, input: Tensor) -> Tensor:
        if self.process_group is None:
            return super().forward(input)
        else:
            rank = torch.distributed.get_rank(self.process_group)
            vocab_size = self.num_embeddings
            vocab_start_index, vocab_end_index = rank * vocab_size, (rank + 1) * vocab_size
            # Create a mask of valid vocab ids (1 means it needs to be masked).
            input_ids_mask = (input < vocab_start_index) | (input >= vocab_end_index)
            input = input - vocab_start_index
            input[input_ids_mask] = 0
            embeddings = super().forward(input)
            embeddings[input_ids_mask] = 0.0
            return embeddings


class ColumnParallelEmbedding(nn.Embedding):
    def __init__(self, num_embeddings, embedding_dim, *args, process_group=None, **kwargs):
        self.process_group = process_group
        if process_group is not None:
            world_size = torch.distributed.get_world_size(process_group)
            if embedding_dim % world_size != 0:
                raise ValueError(
                    f"embedding_dim ({embedding_dim}) must be divisible by "
                    f"world_size ({world_size})"
                )
        else:
            world_size = 1
        super().__init__(num_embeddings, embedding_dim // world_size, *args, **kwargs)


class ParallelGPT2Embeddings(nn.Module):
    def __init__(

        self,

        embed_dim,

        vocab_size,

        max_position_embeddings,

        process_group,

        padding_idx=None,

        sequence_parallel=True,

        device=None,

        dtype=None,

    ):
        """

        If max_position_embeddings <= 0, there's no position embeddings

        """
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.process_group = process_group
        self.sequence_parallel = sequence_parallel
        self.word_embeddings = VocabParallelEmbedding(
            vocab_size,
            embed_dim,
            padding_idx=padding_idx,
            process_group=process_group,
            **factory_kwargs,
        )
        self.max_position_embeddings = max_position_embeddings
        if self.max_position_embeddings > 0:
            self.position_embeddings = ColumnParallelEmbedding(
                max_position_embeddings, embed_dim, process_group=process_group, **factory_kwargs
            )

    def forward(self, input_ids, position_ids=None, combine_batch_seqlen_dim=False):
        """

        input_ids: (batch, seqlen)

        position_ids: (batch, seqlen)

        """
        batch_size, seqlen = input_ids.shape
        world_size = torch.distributed.get_world_size(self.process_group)
        embeddings = self.word_embeddings(input_ids)
        if self.max_position_embeddings > 0:
            if position_ids is None:
                position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
            position_embeddings = self.position_embeddings(position_ids)
            if world_size <= 1:
                embeddings = embeddings + position_embeddings
            else:
                partition_dim = self.position_embeddings.embedding_dim
                rank = torch.distributed.get_rank(self.process_group)
                embeddings[
                    ..., rank * partition_dim : (rank + 1) * partition_dim
                ] += position_embeddings
        if combine_batch_seqlen_dim:
            embeddings = rearrange(embeddings, "b s d -> (b s) d")
        reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
        return embeddings if world_size <= 1 else reduce_fn(embeddings, self.process_group)