File size: 28,595 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
# Copyright (c) 2023, Tri Dao.
# Inspired by https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py
# We make it work with pytorch amp and with bfloat16.
# The TensorParallel linear modules are inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/layers.py
from functools import partial
from typing import Optional

# import fused_dense_cuda  # from apex
import fused_dense_lib as fused_dense_cuda
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.cuda.amp import custom_bwd, custom_fwd
from torch.distributed import ProcessGroup

from flash_attn.ops.activations import gelu_bwd, relu_bwd, sqrelu_bwd, sqrelu_fwd
from flash_attn.utils.distributed import (
    all_gather_raw,
    all_reduce,
    all_reduce_raw,
    reduce_scatter,
    reduce_scatter_raw,
)


class FusedDenseFunc(torch.autograd.Function):
    @staticmethod
    @custom_fwd
    def forward(

        ctx, x, weight, bias, return_residual=False, process_group=None, sequence_parallel=True

    ):
        """

        If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel

        with sequence parallelism: we do an all_gather_raw of x before doing the matmul.

        """
        ctx.compute_weight_gradient = weight.requires_grad
        ctx.return_residual = return_residual
        ctx.process_group = process_group
        ctx.sequence_parallel = sequence_parallel

        if torch.is_autocast_enabled():
            x = x.to(dtype=torch.get_autocast_gpu_dtype())
        x = x.contiguous()
        if process_group is not None and sequence_parallel:
            # We want to kick off the all_gather early, before weight dtype conversion
            total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
        else:
            total_x = x

        if torch.is_autocast_enabled():
            weight = weight.to(dtype=torch.get_autocast_gpu_dtype())
            bias = bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None
        weight = weight.contiguous()
        if process_group is not None and sequence_parallel:
            handle_x.wait()
        batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
        batch_dim = batch_shape.numel()
        # https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
        if min(batch_dim, n, *weight.shape) > 65535 * 32:
            raise RuntimeError("fused_dense only supports matrix dims <= 2M")
        output = F.linear(total_x, weight, bias)
        if ctx.compute_weight_gradient:
            ctx.save_for_backward(x, weight)
        else:
            ctx.save_for_backward(weight)
        return output if not return_residual else (output, x)

    @staticmethod
    @custom_bwd
    def backward(ctx, grad_output, *args):
        grad_output = grad_output.contiguous()
        if ctx.return_residual:
            (grad_input,) = args
            grad_input = grad_input.contiguous()
        process_group = ctx.process_group
        sequence_parallel = ctx.sequence_parallel
        if ctx.compute_weight_gradient:
            x, weight = ctx.saved_tensors
            if process_group is not None and sequence_parallel:
                total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
            else:
                total_x = x
        else:
            (weight,) = ctx.saved_tensors
            total_x = None
        batch_shape = grad_output.shape[:-1]
        batch_dim = batch_shape.numel()
        grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
        if ctx.needs_input_grad[0]:
            if not ctx.return_residual:
                grad_input = F.linear(grad_output, weight.t())
            else:
                grad_input = torch.addmm(
                    grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_output, weight
                )
            grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
            if process_group is not None:
                reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw
                grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True)
        else:
            grad_input = None
        if ctx.needs_input_grad[1]:
            assert ctx.compute_weight_gradient
            if process_group is not None and sequence_parallel:
                handle_x.wait()
            grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad(
                total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2]
            )
        else:
            grad_weight = None
            grad_bias = grad_output if ctx.needs_input_grad[2] else None
        if process_group is not None and ctx.needs_input_grad[0]:
            handle_grad_input.wait()
        return grad_input, grad_weight, grad_bias, None, None, None


def fused_dense_func(

    x: Tensor,

    weight: Tensor,

    bias: Optional[Tensor] = None,

    return_residual: bool = False,

    process_group: Optional[ProcessGroup] = None,

    sequence_parallel: bool = True,

):
    dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or (
        x.dtype == torch.float32 and torch.is_autocast_enabled()
    )
    if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible:
        return FusedDenseFunc.apply(
            x, weight, bias, return_residual, process_group, sequence_parallel
        )
    else:
        assert process_group is None
        out = F.linear(x, weight, bias)
        return out if not return_residual else (out, x)


class FusedDense(nn.Linear):
    def __init__(

        self,

        in_features: int,

        out_features: int,

        bias: bool = True,

        return_residual: bool = False,

        device=None,

        dtype=None,

    ) -> None:
        super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype)
        self.return_residual = return_residual

    def forward(self, x, process_group=None):
        """

        If process_group is not None, we're doing Tensor Parallel with sequence parallelism:

        we do an all_gather of x before doing the matmul.

        """
        return fused_dense_func(
            x,
            self.weight,
            self.bias,
            return_residual=self.return_residual,
            process_group=process_group,
        )


class ColumnParallelLinear(nn.Linear):
    def __init__(

        self,

        in_features: int,

        out_features: int,

        process_group: ProcessGroup,

        bias: bool = True,

        sequence_parallel=True,

        multiple_of=1,

        device=None,

        dtype=None,

    ) -> None:
        world_size = torch.distributed.get_world_size(process_group)
        if out_features % multiple_of:
            raise ValueError(f"out_features ({out_features}) must be a multiple of {multiple_of}")
        multiple = out_features // multiple_of
        # We want to split @multiple across world_size, but it could be an uneven split
        div = multiple // world_size
        mod = multiple % world_size
        # The first @mod ranks get @div + 1 copies, the rest get @div copies
        local_multiple = div + int(torch.distributed.get_rank(process_group) < mod)
        super().__init__(
            in_features, local_multiple * multiple_of, bias=bias, device=device, dtype=dtype
        )
        self.process_group = process_group
        self.sequence_parallel = sequence_parallel

    def forward(self, x):
        # If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
        # we do an all_gather of x before doing the matmul.
        # If not, then the input is already gathered.
        return fused_dense_func(
            x,
            self.weight,
            self.bias,
            process_group=self.process_group,
            sequence_parallel=self.sequence_parallel,
        )


class RowParallelLinear(nn.Linear):
    def __init__(

        self,

        in_features: int,

        out_features: int,

        process_group: ProcessGroup,

        bias: bool = True,

        sequence_parallel=True,

        multiple_of=1,

        device=None,

        dtype=None,

    ) -> None:
        world_size = torch.distributed.get_world_size(process_group)
        rank = torch.distributed.get_rank(process_group)
        if in_features % multiple_of:
            raise ValueError(f"in_features ({in_features}) must be a multiple of {multiple_of}")
        multiple = in_features // multiple_of
        # We want to split @multiple across world_size, but it could be an uneven split
        div = multiple // world_size
        mod = multiple % world_size
        # The first @mod ranks get @div + 1 copies, the rest get @div copies
        local_multiple = div + int(torch.distributed.get_rank(process_group) < mod)
        # Only rank 0 will have bias
        super().__init__(
            local_multiple * multiple_of,
            out_features,
            bias=bias and rank == 0,
            device=device,
            dtype=dtype,
        )
        self.process_group = process_group
        self.sequence_parallel = sequence_parallel

    def forward(self, x):
        """

        We're doing Tensor Parallel with sequence parallelism: we do the matmul and then

        a reduce_scatter of the result.

        """
        out = fused_dense_func(x, self.weight, self.bias)
        reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
        return reduce_fn(out, self.process_group)


class FusedMLPFunc(torch.autograd.Function):
    @staticmethod
    @custom_fwd
    def forward(

        ctx,

        x,

        weight1,

        bias1,

        weight2,

        bias2,

        activation="gelu_approx",

        save_pre_act=True,

        return_residual=False,

        checkpoint_lvl=0,

        heuristic=0,

        process_group=None,

        sequence_parallel=True,

    ):
        """

        If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel

        with sequence parallelism: we do an all_gather of x before doing the matmul.

        If sequence_parallel=False, then the input is already gathered.



        checkpoint_lvl:

        0: no recomputation in the bwd

        1: recompute gelu_out / relu_out in the bwd

        2: recompute pre_act and gelu_out / relu_out in the bwd

        """
        assert -1 <= heuristic <= 4
        assert activation in ["gelu_approx", "relu", "sqrelu"]
        if activation == "sqrelu":
            assert heuristic == -1
        if not save_pre_act:
            checkpoint_lvl = 2
        assert checkpoint_lvl in [0, 1, 2]
        ctx.return_residual = return_residual
        ctx.process_group = process_group
        ctx.sequence_parallel = sequence_parallel
        ctx.checkpoint_lvl = checkpoint_lvl
        ctx.activation = activation
        ctx.heuristic = heuristic

        if torch.is_autocast_enabled():
            x = x.to(dtype=torch.get_autocast_gpu_dtype())
        x = x.contiguous()
        if process_group is not None and sequence_parallel:
            # We want to kick off the all_gather early, before weight dtype conversion
            total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
        else:
            total_x = x

        if torch.is_autocast_enabled():
            dtype = torch.get_autocast_gpu_dtype()
            weight1, weight2 = [a.to(dtype=dtype) for a in [weight1, weight2]]
            bias1 = bias1.to(dtype=dtype) if bias1 is not None else None
            bias2 = bias2.to(dtype=dtype) if bias2 is not None else None
        weight1 = weight1.contiguous()
        bias1 = bias1.contiguous() if bias1 is not None else None
        weight2 = weight2.contiguous()
        bias2 = bias2.contiguous() if bias2 is not None else None
        if process_group is not None and sequence_parallel:
            handle_x.wait()
        batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
        batch_dim = batch_shape.numel()
        # https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
        if min(batch_dim, n, *weight1.shape, *weight2.shape) > 65535 * 32:
            raise RuntimeError("fused_dense only supports matrix dims <= 2M")
        if heuristic == -1:
            pre_act = F.linear(total_x, weight1, bias1)
            activation_fn = (
                partial(F.gelu, approximate="tanh")
                if activation == "gelu_approx"
                else (sqrelu_fwd if activation == "sqrelu" else F.relu)
            )
            with torch.jit.fuser("fuser2"):
                output1 = activation_fn(pre_act)
            # This is before adding bias1
            # pre_act = F.linear(total_x.reshape(batch_dim, n), weight1)
            # with torch.jit.fuser('fuser2'):
            #     output1 = bias_gelu(pre_act, bias1)
        else:
            is_gelu = activation == "gelu_approx"
            output1, *rest = fused_dense_cuda.linear_act_forward(
                total_x.reshape(batch_dim, n), weight1, bias1, is_gelu, save_pre_act, heuristic
            )
            if save_pre_act:
                pre_act = rest[0]
        output2 = F.linear(output1, weight2, bias2)
        if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == "relu"):
            # For RELU the pre_act is very small (just a bit-mask) so we just save it
            ctx.save_for_backward(x, weight1, weight2, pre_act, output1)
        elif checkpoint_lvl == 1:
            ctx.save_for_backward(x, weight1, weight2, pre_act)
        elif checkpoint_lvl == 2:
            ctx.save_for_backward(x, weight1, weight2, bias1)
        output2 = output2.reshape(*batch_shape, output2.shape[-1])
        return output2 if not return_residual else (output2, x)

    @staticmethod
    @custom_bwd
    def backward(ctx, grad_output, *args):
        grad_output = grad_output.contiguous()
        checkpoint_lvl = ctx.checkpoint_lvl
        activation = ctx.activation
        activation_fn = (
            partial(F.gelu, approximate="tanh")
            if activation == "gelu_approx"
            else (sqrelu_fwd if activation == "sqrelu" else F.relu)
        )
        if ctx.return_residual:
            (grad_input,) = args
            grad_input = grad_input.contiguous()
        process_group = ctx.process_group
        sequence_parallel = ctx.sequence_parallel
        x, weight1, weight2, *rest = ctx.saved_tensors
        if process_group is None or not sequence_parallel:
            total_x = x
        batch_shape = grad_output.shape[:-1]
        batch_dim = batch_shape.numel()
        if checkpoint_lvl in [0, 1]:
            if process_group is not None and sequence_parallel:
                total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
            if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == "relu"):
                pre_act, output1 = rest
            elif checkpoint_lvl == 1:
                (pre_act,) = rest
                with torch.jit.fuser("fuser2"):
                    output1 = activation_fn(pre_act)
        elif checkpoint_lvl == 2:
            (bias1,) = rest
            if process_group is not None and sequence_parallel:
                total_x, _ = all_gather_raw(x, process_group)
            if ctx.heuristic == -1:
                pre_act = F.linear(total_x, weight1, bias1)
                with torch.jit.fuser("fuser2"):
                    output1 = activation_fn(pre_act)
            else:
                output1, pre_act = fused_dense_cuda.linear_act_forward(
                    total_x.reshape(batch_dim, total_x.shape[-1]),
                    weight1,
                    bias1,
                    activation == "gelu_approx",
                    True,
                    ctx.heuristic,
                )

        grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
        output1 = output1.reshape(batch_dim, output1.shape[-1])
        pre_act = pre_act.reshape(batch_dim, pre_act.shape[-1])
        if ctx.needs_input_grad[3]:
            grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(
                output1, grad_output, ctx.needs_input_grad[4]
            )
        else:
            grad_weight2 = None
            grad_bias2 = grad_output if ctx.needs_input_grad[4] else None
        if ctx.heuristic == -1:
            # grad_pre_act = matmul_dgelu(grad_output, weight2, pre_act)
            grad_output1 = F.linear(grad_output, weight2.t())
            activation_grad_fn = (
                gelu_bwd
                if activation == "gelu_approx"
                else (sqrelu_bwd if activation == "sqrelu" else relu_bwd)
            )
            with torch.jit.fuser("fuser2"):
                grad_pre_act = activation_grad_fn(grad_output1, pre_act)
        else:
            # The cublasLt epilogue has to compute both gelu/relu grad and bias grad, we can't
            # just compute gelu/relu grad
            grad_pre_act, grad_bias1 = fused_dense_cuda.bias_act_linear_dgrad_bgrad(
                weight2, grad_output, pre_act, activation == "gelu_approx", ctx.heuristic
            )
            if not ctx.needs_input_grad[2]:
                grad_bias1 = None
        if ctx.needs_input_grad[0]:
            if not ctx.return_residual:
                grad_input = F.linear(grad_pre_act, weight1.t())
            else:
                grad_input = torch.addmm(
                    grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_pre_act, weight1
                )
            grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
            if process_group is not None:
                reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw
                grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True)
        else:
            grad_input = None
        if ctx.heuristic == -1:
            if ctx.needs_input_grad[1]:
                if process_group is not None and sequence_parallel and checkpoint_lvl != 2:
                    handle_x.wait()
                grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_wgrad(
                    total_x.reshape(batch_dim, total_x.shape[-1]),
                    grad_pre_act,
                    ctx.needs_input_grad[2],
                )
            else:
                grad_weight1 = None
                grad_bias1 = grad_pre_act if ctx.needs_input_grad[2] else None
        else:
            if ctx.needs_input_grad[1]:
                if process_group is not None and sequence_parallel and checkpoint_lvl != 2:
                    handle_x.wait()
                grad_weight1 = F.linear(
                    grad_pre_act.t(), total_x.reshape(batch_dim, total_x.shape[-1]).t()
                )
            else:
                grad_weight1 = None
        if process_group is not None and ctx.needs_input_grad[0]:
            handle_grad_input.wait()
        return (
            grad_input,
            grad_weight1,
            grad_bias1,
            grad_weight2,
            grad_bias2,
            None,
            None,
            None,
            None,
            None,
            None,
            None,
        )


def fused_mlp_func(

    x: Tensor,

    weight1: Tensor,

    weight2: Tensor,

    bias1: Optional[Tensor] = None,

    bias2: Optional[Tensor] = None,

    activation: str = "gelu_approx",

    save_pre_act: bool = True,

    return_residual: bool = False,

    checkpoint_lvl: int = 0,

    heuristic: int = 0,

    process_group: Optional[ProcessGroup] = None,

    sequence_parallel: bool = True,

):
    assert activation in ["gelu_approx", "relu", "sqrelu"]
    dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or (
        x.dtype == torch.float32 and torch.is_autocast_enabled()
    )
    # If we save pre-activation, dimension must be divisible by 128 (relu) or 8 (gelu)
    dim_eligible = not save_pre_act or (x.shape[-1] % (128 if activation == "relu" else 8) == 0)
    if (
        x.is_cuda
        and weight1.is_cuda
        and weight2.is_cuda
        and (bias1 is None or bias1.is_cuda)
        and (bias2 is None or bias2.is_cuda)
        and dtype_eligible
        and dim_eligible
    ):
        return FusedMLPFunc.apply(
            x,
            weight1,
            bias1,
            weight2,
            bias2,
            activation,
            save_pre_act,
            return_residual,
            checkpoint_lvl,
            heuristic,
            process_group,
            sequence_parallel,
        )
    else:
        assert process_group is None
        pre_act = F.linear(x, weight1, bias1)
        activation_fn = (
            partial(F.gelu, approximate="tanh")
            if activation == "gelu_approx"
            else partial(F.relu, inplace=True)
        )
        output1 = activation_fn(pre_act)
        output2 = F.linear(output1, weight2, bias2)
        return output2 if not return_residual else (output2, x)


class FusedMLP(nn.Module):
    def __init__(

        self,

        in_features,

        hidden_features=None,

        out_features=None,

        bias1=True,

        bias2=True,

        activation="gelu_approx",

        return_residual=False,

        checkpoint_lvl=0,

        heuristic="auto",

        device=None,

        dtype=None,

    ):
        """

        If process_group is not None, we're doing Tensor Parallel with sequence parallelism:

        we do an all_gather of x before doing the matmul, gelu, then matmul.

        Finally we do a reduce_scatter of the output.



        checkpoint_lvl (increasing lvl means slower but more memory saving):

            0: no recomputation in the bwd

            1: recompute gelu_out in the bwd

            2: recompute pre_act and gelu_out in the bwd

        heuristic:

            -1: don't fuse gemm + gelu (separate kernel)

            0..4: use this heuristic for the algo section in the fused gemm + gelu

            'auto': heuristic will be picked automatically:

                For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf.

                For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16.

                For H100, we set heuristic=-1 for both fp16 and bf16 as the fused cuBlasLt implementation

                is slower than the unfused version.

        return_residual: whether to return the input x along with the output. This is for

            performance reason: for post-norm architecture, returning the input allows us

            to fuse the backward of nn.Linear with the residual connection.

        """
        assert checkpoint_lvl in [0, 1, 2]
        assert activation in ["gelu_approx", "relu", "sqrelu"]
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features * 4
        self.activation = activation
        self.return_residual = return_residual
        self.checkpoint_lvl = checkpoint_lvl
        self.heuristic = heuristic if activation != "sqrelu" else -1
        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)

    def forward(self, x, process_group=None):
        dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype()
        if self.heuristic == "auto":
            if self.activation == "gelu_approx":
                if torch.cuda.get_device_capability("cuda") == (9, 0):
                    heuristic = -1
                else:
                    cuda_ver = tuple(map(int, torch.version.cuda.split(".")))
                    heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1)
            else:
                heuristic = 0
        else:
            heuristic = self.heuristic
        out = fused_mlp_func(
            x,
            self.fc1.weight,
            self.fc2.weight,
            self.fc1.bias,
            self.fc2.bias,
            activation=self.activation,
            save_pre_act=self.training,
            return_residual=self.return_residual,
            checkpoint_lvl=self.checkpoint_lvl,
            heuristic=heuristic,
            process_group=process_group,
        )
        if self.return_residual:
            out, x = out
        if process_group is not None:
            out = reduce_scatter(out, process_group)
        return out if not self.return_residual else (out, x)


class ParallelFusedMLP(nn.Module):
    def __init__(

        self,

        in_features,

        hidden_features=None,

        out_features=None,

        activation="gelu_approx",

        process_group: ProcessGroup = None,

        bias1=True,

        bias2=True,

        sequence_parallel=True,

        checkpoint_lvl=0,

        heuristic="auto",

        device=None,

        dtype=None,

    ):
        """

        process_group is required. We're doing Tensor Parallel with sequence parallelism:

        we do an all_gather of x before doing the matmul, gelu, then matmul.

        Finally we do a reduce_scatter of the output.



        checkpoint_lvl (increasing lvl means slower but more memory saving):

            0: no recomputation in the bwd

            1: recompute gelu_out in the bwd

            2: recompute pre_act and gelu_out in the bwd

        heuristic:

            -1: don't fuse gemm + gelu (separate kernel)

            0..4: use this heuristic for the algo section in the fused gemm + gelu

            'auto': heuristic will be picked automatically:

                For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf.

                For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16.

        """
        assert checkpoint_lvl in [0, 1, 2]
        assert activation in ["gelu_approx", "relu", "sqrelu"]
        assert process_group is not None
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features * 4
        self.activation = activation
        self.process_group = process_group
        self.sequence_parallel = sequence_parallel
        self.checkpoint_lvl = checkpoint_lvl
        self.heuristic = heuristic if activation != "sqrelu" else -1
        self.fc1 = ColumnParallelLinear(
            in_features, hidden_features, process_group, bias=bias1, **factory_kwargs
        )
        self.fc2 = RowParallelLinear(
            hidden_features, out_features, process_group, bias=bias2, **factory_kwargs
        )

    def forward(self, x):
        dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype()
        if self.heuristic == "auto":
            if self.activation == "gelu_approx":
                cuda_ver = tuple(map(int, torch.version.cuda.split(".")))
                heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1)
            else:
                heuristic = 0
        else:
            heuristic = self.heuristic
        out = fused_mlp_func(
            x,
            self.fc1.weight,
            self.fc2.weight,
            self.fc1.bias,
            self.fc2.bias,
            activation=self.activation,
            save_pre_act=self.training,
            checkpoint_lvl=self.checkpoint_lvl,
            heuristic=heuristic,
            process_group=self.process_group,
            sequence_parallel=self.sequence_parallel,
        )
        reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
        return reduce_fn(out, self.process_group)