File size: 36,106 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
# Copyright (c) 2024, Tri Dao.
# Implement dropout + residual + layer_norm / rms_norm.

# Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
# For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
# This is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.

import math

import torch
import torch.nn.functional as F
from torch.cuda.amp import custom_fwd, custom_bwd

import triton
import triton.language as tl


def layer_norm_ref(

    x,

    weight,

    bias,

    residual=None,

    x1=None,

    weight1=None,

    bias1=None,

    eps=1e-6,

    dropout_p=0.0,

    rowscale=None,

    prenorm=False,

    dropout_mask=None,

    dropout_mask1=None,

    upcast=False,

):
    dtype = x.dtype
    if upcast:
        x = x.float()
        weight = weight.float()
        bias = bias.float() if bias is not None else None
        residual = residual.float() if residual is not None else residual
        x1 = x1.float() if x1 is not None else None
        weight1 = weight1.float() if weight1 is not None else None
        bias1 = bias1.float() if bias1 is not None else None
    if x1 is not None:
        assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
    if rowscale is not None:
        x = x * rowscale[..., None]
    if dropout_p > 0.0:
        if dropout_mask is not None:
            x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p)
        else:
            x = F.dropout(x, p=dropout_p)
        if x1 is not None:
            if dropout_mask1 is not None:
                x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p)
            else:
                x1 = F.dropout(x1, p=dropout_p)
    if x1 is not None:
        x = x + x1
    if residual is not None:
        x = (x + residual).to(x.dtype)
    out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(
        dtype
    )
    if weight1 is None:
        return out if not prenorm else (out, x)
    else:
        out1 = F.layer_norm(
            x.to(weight1.dtype), x.shape[-1:], weight=weight1, bias=bias1, eps=eps
        ).to(dtype)
        return (out, out1) if not prenorm else (out, out1, x)


def rms_norm_ref(

    x,

    weight,

    bias,

    residual=None,

    x1=None,

    weight1=None,

    bias1=None,

    eps=1e-6,

    dropout_p=0.0,

    rowscale=None,

    prenorm=False,

    dropout_mask=None,

    dropout_mask1=None,

    upcast=False,

):
    dtype = x.dtype
    if upcast:
        x = x.float()
        weight = weight.float()
        bias = bias.float() if bias is not None else None
        residual = residual.float() if residual is not None else residual
        x1 = x1.float() if x1 is not None else None
        weight1 = weight1.float() if weight1 is not None else None
        bias1 = bias1.float() if bias1 is not None else None
    if x1 is not None:
        assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
    if rowscale is not None:
        x = x * rowscale[..., None]
    if dropout_p > 0.0:
        if dropout_mask is not None:
            x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p)
        else:
            x = F.dropout(x, p=dropout_p)
        if x1 is not None:
            if dropout_mask1 is not None:
                x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p)
            else:
                x1 = F.dropout(x1, p=dropout_p)
    if x1 is not None:
        x = x + x1
    if residual is not None:
        x = (x + residual).to(x.dtype)
    rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
    out = ((x * rstd * weight) + bias if bias is not None else (x * rstd * weight)).to(dtype)
    if weight1 is None:
        return out if not prenorm else (out, x)
    else:
        out1 = ((x * rstd * weight1) + bias1 if bias1 is not None else (x * rstd * weight1)).to(
            dtype
        )
        return (out, out1) if not prenorm else (out, out1, x)


@triton.autotune(

    configs=[

        triton.Config({}, num_warps=1),

        triton.Config({}, num_warps=2),

        triton.Config({}, num_warps=4),

        triton.Config({}, num_warps=8),

        triton.Config({}, num_warps=16),

        triton.Config({}, num_warps=32),

    ],

    key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],

)
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
@triton.heuristics({"HAS_X1": lambda args: args["X1"] is not None})
@triton.heuristics({"HAS_W1": lambda args: args["W1"] is not None})
@triton.heuristics({"HAS_B1": lambda args: args["B1"] is not None})
@triton.jit
def _layer_norm_fwd_1pass_kernel(

    X,  # pointer to the input

    Y,  # pointer to the output

    W,  # pointer to the weights

    B,  # pointer to the biases

    RESIDUAL,  # pointer to the residual

    X1,

    W1,

    B1,

    Y1,

    RESIDUAL_OUT,  # pointer to the residual

    ROWSCALE,

    SEEDS,  # Dropout seeds for each row

    DROPOUT_MASK,

    Mean,  # pointer to the mean

    Rstd,  # pointer to the 1/std

    stride_x_row,  # how much to increase the pointer when moving by 1 row

    stride_y_row,

    stride_res_row,

    stride_res_out_row,

    stride_x1_row,

    stride_y1_row,

    M,  # number of rows in X

    N,  # number of columns in X

    eps,  # epsilon to avoid division by zero

    dropout_p,  # Dropout probability

    IS_RMS_NORM: tl.constexpr,

    BLOCK_N: tl.constexpr,

    HAS_RESIDUAL: tl.constexpr,

    STORE_RESIDUAL_OUT: tl.constexpr,

    HAS_BIAS: tl.constexpr,

    HAS_DROPOUT: tl.constexpr,

    STORE_DROPOUT_MASK: tl.constexpr,

    HAS_ROWSCALE: tl.constexpr,

    HAS_X1: tl.constexpr,

    HAS_W1: tl.constexpr,

    HAS_B1: tl.constexpr,

):
    # Map the program id to the row of X and Y it should compute.
    row = tl.program_id(0)
    X += row * stride_x_row
    Y += row * stride_y_row
    if HAS_RESIDUAL:
        RESIDUAL += row * stride_res_row
    if STORE_RESIDUAL_OUT:
        RESIDUAL_OUT += row * stride_res_out_row
    if HAS_X1:
        X1 += row * stride_x1_row
    if HAS_W1:
        Y1 += row * stride_y1_row
    # Compute mean and variance
    cols = tl.arange(0, BLOCK_N)
    x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
    if HAS_ROWSCALE:
        rowscale = tl.load(ROWSCALE + row).to(tl.float32)
        x *= rowscale
    if HAS_DROPOUT:
        # Compute dropout mask
        # 7 rounds is good enough, and reduces register pressure
        keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
        x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0)
        if STORE_DROPOUT_MASK:
            tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N)
    if HAS_X1:
        x1 = tl.load(X1 + cols, mask=cols < N, other=0.0).to(tl.float32)
        if HAS_ROWSCALE:
            rowscale = tl.load(ROWSCALE + M + row).to(tl.float32)
            x1 *= rowscale
        if HAS_DROPOUT:
            # Compute dropout mask
            # 7 rounds is good enough, and reduces register pressure
            keep_mask = (
                tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
            )
            x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0)
            if STORE_DROPOUT_MASK:
                tl.store(DROPOUT_MASK + (M + row) * N + cols, keep_mask, mask=cols < N)
        x += x1
    if HAS_RESIDUAL:
        residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
        x += residual
    if STORE_RESIDUAL_OUT:
        tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
    if not IS_RMS_NORM:
        mean = tl.sum(x, axis=0) / N
        tl.store(Mean + row, mean)
        xbar = tl.where(cols < N, x - mean, 0.0)
        var = tl.sum(xbar * xbar, axis=0) / N
    else:
        xbar = tl.where(cols < N, x, 0.0)
        var = tl.sum(xbar * xbar, axis=0) / N
    rstd = 1 / tl.sqrt(var + eps)
    tl.store(Rstd + row, rstd)
    # Normalize and apply linear transformation
    mask = cols < N
    w = tl.load(W + cols, mask=mask).to(tl.float32)
    if HAS_BIAS:
        b = tl.load(B + cols, mask=mask).to(tl.float32)
    x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
    y = x_hat * w + b if HAS_BIAS else x_hat * w
    # Write output
    tl.store(Y + cols, y, mask=mask)
    if HAS_W1:
        w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
        if HAS_B1:
            b1 = tl.load(B1 + cols, mask=mask).to(tl.float32)
        y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1
        tl.store(Y1 + cols, y1, mask=mask)


def _layer_norm_fwd(

    x,

    weight,

    bias,

    eps,

    residual=None,

    x1=None,

    weight1=None,

    bias1=None,

    dropout_p=0.0,

    rowscale=None,

    out_dtype=None,

    residual_dtype=None,

    is_rms_norm=False,

    return_dropout_mask=False,

):
    if residual is not None:
        residual_dtype = residual.dtype
    M, N = x.shape
    assert x.stride(-1) == 1
    if residual is not None:
        assert residual.stride(-1) == 1
        assert residual.shape == (M, N)
    assert weight.shape == (N,)
    assert weight.stride(-1) == 1
    if bias is not None:
        assert bias.stride(-1) == 1
        assert bias.shape == (N,)
    if x1 is not None:
        assert x1.shape == x.shape
        assert rowscale is None
        assert x1.stride(-1) == 1
    if weight1 is not None:
        assert weight1.shape == (N,)
        assert weight1.stride(-1) == 1
    if bias1 is not None:
        assert bias1.shape == (N,)
        assert bias1.stride(-1) == 1
    if rowscale is not None:
        assert rowscale.is_contiguous()
        assert rowscale.shape == (M,)
    # allocate output
    y = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
    assert y.stride(-1) == 1
    if weight1 is not None:
        y1 = torch.empty_like(y)
        assert y1.stride(-1) == 1
    else:
        y1 = None
    if (
        residual is not None
        or (residual_dtype is not None and residual_dtype != x.dtype)
        or dropout_p > 0.0
        or rowscale is not None
        or x1 is not None
    ):
        residual_out = torch.empty(
            M, N, device=x.device, dtype=residual_dtype if residual_dtype is not None else x.dtype
        )
        assert residual_out.stride(-1) == 1
    else:
        residual_out = None
    mean = torch.empty((M,), dtype=torch.float32, device=x.device) if not is_rms_norm else None
    rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
    if dropout_p > 0.0:
        seeds = torch.randint(
            2**32, (M if x1 is None else 2 * M,), device=x.device, dtype=torch.int64
        )
    else:
        seeds = None
    if return_dropout_mask and dropout_p > 0.0:
        dropout_mask = torch.empty(M if x1 is None else 2 * M, N, device=x.device, dtype=torch.bool)
    else:
        dropout_mask = None
    # Less than 64KB per feature: enqueue fused kernel
    MAX_FUSED_SIZE = 65536 // x.element_size()
    BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
    if N > BLOCK_N:
        raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
    with torch.cuda.device(x.device.index):
        _layer_norm_fwd_1pass_kernel[(M,)](
            x,
            y,
            weight,
            bias,
            residual,
            x1,
            weight1,
            bias1,
            y1,
            residual_out,
            rowscale,
            seeds,
            dropout_mask,
            mean,
            rstd,
            x.stride(0),
            y.stride(0),
            residual.stride(0) if residual is not None else 0,
            residual_out.stride(0) if residual_out is not None else 0,
            x1.stride(0) if x1 is not None else 0,
            y1.stride(0) if y1 is not None else 0,
            M,
            N,
            eps,
            dropout_p,
            is_rms_norm,
            BLOCK_N,
            residual is not None,
            residual_out is not None,
            bias is not None,
            dropout_p > 0.0,
            dropout_mask is not None,
            rowscale is not None,
        )
    # residual_out is None if residual is None and residual_dtype == input_dtype and dropout_p == 0.0
    if dropout_mask is not None and x1 is not None:
        dropout_mask, dropout_mask1 = dropout_mask.tensor_split(2, dim=0)
    else:
        dropout_mask1 = None
    return (
        y,
        y1,
        mean,
        rstd,
        residual_out if residual_out is not None else x,
        seeds,
        dropout_mask,
        dropout_mask1,
    )


@triton.autotune(

    configs=[

        triton.Config({}, num_warps=1),

        triton.Config({}, num_warps=2),

        triton.Config({}, num_warps=4),

        triton.Config({}, num_warps=8),

        triton.Config({}, num_warps=16),

        triton.Config({}, num_warps=32),

    ],

    key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS", "HAS_DROPOUT"],

)
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
@triton.heuristics({"HAS_ROWSCALE": lambda args: args["ROWSCALE"] is not None})
@triton.heuristics({"HAS_DY1": lambda args: args["DY1"] is not None})
@triton.heuristics({"HAS_DX1": lambda args: args["DX1"] is not None})
@triton.heuristics({"HAS_B1": lambda args: args["DB1"] is not None})
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
@triton.jit
def _layer_norm_bwd_kernel(

    X,  # pointer to the input

    W,  # pointer to the weights

    B,  # pointer to the biases

    Y,  # pointer to the output to be recomputed

    DY,  # pointer to the output gradient

    DX,  # pointer to the input gradient

    DW,  # pointer to the partial sum of weights gradient

    DB,  # pointer to the partial sum of biases gradient

    DRESIDUAL,

    W1,

    DY1,

    DX1,

    DW1,

    DB1,

    DRESIDUAL_IN,

    ROWSCALE,

    SEEDS,

    Mean,  # pointer to the mean

    Rstd,  # pointer to the 1/std

    stride_x_row,  # how much to increase the pointer when moving by 1 row

    stride_y_row,

    stride_dy_row,

    stride_dx_row,

    stride_dres_row,

    stride_dy1_row,

    stride_dx1_row,

    stride_dres_in_row,

    M,  # number of rows in X

    N,  # number of columns in X

    eps,  # epsilon to avoid division by zero

    dropout_p,

    rows_per_program,

    IS_RMS_NORM: tl.constexpr,

    BLOCK_N: tl.constexpr,

    HAS_DRESIDUAL: tl.constexpr,

    STORE_DRESIDUAL: tl.constexpr,

    HAS_BIAS: tl.constexpr,

    HAS_DROPOUT: tl.constexpr,

    HAS_ROWSCALE: tl.constexpr,

    HAS_DY1: tl.constexpr,

    HAS_DX1: tl.constexpr,

    HAS_B1: tl.constexpr,

    RECOMPUTE_OUTPUT: tl.constexpr,

):
    # Map the program id to the elements of X, DX, and DY it should compute.
    row_block_id = tl.program_id(0)
    row_start = row_block_id * rows_per_program
    # Do not early exit if row_start >= M, because we need to write DW and DB
    cols = tl.arange(0, BLOCK_N)
    mask = cols < N
    X += row_start * stride_x_row
    if HAS_DRESIDUAL:
        DRESIDUAL += row_start * stride_dres_row
    if STORE_DRESIDUAL:
        DRESIDUAL_IN += row_start * stride_dres_in_row
    DY += row_start * stride_dy_row
    DX += row_start * stride_dx_row
    if HAS_DY1:
        DY1 += row_start * stride_dy1_row
    if HAS_DX1:
        DX1 += row_start * stride_dx1_row
    if RECOMPUTE_OUTPUT:
        Y += row_start * stride_y_row
    w = tl.load(W + cols, mask=mask).to(tl.float32)
    if RECOMPUTE_OUTPUT and HAS_BIAS:
        b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
    if HAS_DY1:
        w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
    dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
    if HAS_BIAS:
        db = tl.zeros((BLOCK_N,), dtype=tl.float32)
    if HAS_DY1:
        dw1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
        if HAS_B1:
            db1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
    row_end = min((row_block_id + 1) * rows_per_program, M)
    for row in range(row_start, row_end):
        # Load data to SRAM
        x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
        dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
        if HAS_DY1:
            dy1 = tl.load(DY1 + cols, mask=mask, other=0).to(tl.float32)
        if not IS_RMS_NORM:
            mean = tl.load(Mean + row)
        rstd = tl.load(Rstd + row)
        # Compute dx
        xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
        xhat = tl.where(mask, xhat, 0.0)
        if RECOMPUTE_OUTPUT:
            y = xhat * w + b if HAS_BIAS else xhat * w
            tl.store(Y + cols, y, mask=mask)
        wdy = w * dy
        dw += dy * xhat
        if HAS_BIAS:
            db += dy
        if HAS_DY1:
            wdy += w1 * dy1
            dw1 += dy1 * xhat
            if HAS_B1:
                db1 += dy1
        if not IS_RMS_NORM:
            c1 = tl.sum(xhat * wdy, axis=0) / N
            c2 = tl.sum(wdy, axis=0) / N
            dx = (wdy - (xhat * c1 + c2)) * rstd
        else:
            c1 = tl.sum(xhat * wdy, axis=0) / N
            dx = (wdy - xhat * c1) * rstd
        if HAS_DRESIDUAL:
            dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
            dx += dres
        # Write dx
        if STORE_DRESIDUAL:
            tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
        if HAS_DX1:
            if HAS_DROPOUT:
                keep_mask = (
                    tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
                )
                dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
            else:
                dx1 = dx
            tl.store(DX1 + cols, dx1, mask=mask)
        if HAS_DROPOUT:
            keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
            dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
        if HAS_ROWSCALE:
            rowscale = tl.load(ROWSCALE + row).to(tl.float32)
            dx *= rowscale
        tl.store(DX + cols, dx, mask=mask)

        X += stride_x_row
        if HAS_DRESIDUAL:
            DRESIDUAL += stride_dres_row
        if STORE_DRESIDUAL:
            DRESIDUAL_IN += stride_dres_in_row
        if RECOMPUTE_OUTPUT:
            Y += stride_y_row
        DY += stride_dy_row
        DX += stride_dx_row
        if HAS_DY1:
            DY1 += stride_dy1_row
        if HAS_DX1:
            DX1 += stride_dx1_row
    tl.store(DW + row_block_id * N + cols, dw, mask=mask)
    if HAS_BIAS:
        tl.store(DB + row_block_id * N + cols, db, mask=mask)
    if HAS_DY1:
        tl.store(DW1 + row_block_id * N + cols, dw1, mask=mask)
        if HAS_B1:
            tl.store(DB1 + row_block_id * N + cols, db1, mask=mask)


def _layer_norm_bwd(

    dy,

    x,

    weight,

    bias,

    eps,

    mean,

    rstd,

    dresidual=None,

    dy1=None,

    weight1=None,

    bias1=None,

    seeds=None,

    dropout_p=0.0,

    rowscale=None,

    has_residual=False,

    has_x1=False,

    is_rms_norm=False,

    x_dtype=None,

    recompute_output=False,

):
    M, N = x.shape
    assert x.stride(-1) == 1
    assert dy.stride(-1) == 1
    assert dy.shape == (M, N)
    if dresidual is not None:
        assert dresidual.stride(-1) == 1
        assert dresidual.shape == (M, N)
    assert weight.shape == (N,)
    assert weight.stride(-1) == 1
    if bias is not None:
        assert bias.stride(-1) == 1
        assert bias.shape == (N,)
    if dy1 is not None:
        assert weight1 is not None
        assert dy1.shape == dy.shape
        assert dy1.stride(-1) == 1
    if weight1 is not None:
        assert weight1.shape == (N,)
        assert weight1.stride(-1) == 1
    if bias1 is not None:
        assert bias1.shape == (N,)
        assert bias1.stride(-1) == 1
    if seeds is not None:
        assert seeds.is_contiguous()
        assert seeds.shape == (M if not has_x1 else M * 2,)
    if rowscale is not None:
        assert rowscale.is_contiguous()
        assert rowscale.shape == (M,)
    # allocate output
    dx = (
        torch.empty_like(x)
        if x_dtype is None
        else torch.empty(M, N, dtype=x_dtype, device=x.device)
    )
    dresidual_in = (
        torch.empty_like(x)
        if has_residual
        and (dx.dtype != x.dtype or dropout_p > 0.0 or rowscale is not None or has_x1)
        else None
    )
    dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None
    y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
    if recompute_output:
        assert weight1 is None, "recompute_output is not supported with parallel LayerNorm"

    # Less than 64KB per feature: enqueue fused kernel
    MAX_FUSED_SIZE = 65536 // x.element_size()
    BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
    if N > BLOCK_N:
        raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
    sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
    _dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
    _db = (
        torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
        if bias is not None
        else None
    )
    _dw1 = torch.empty_like(_dw) if weight1 is not None else None
    _db1 = torch.empty_like(_db) if bias1 is not None else None
    rows_per_program = math.ceil(M / sm_count)
    grid = (sm_count,)
    with torch.cuda.device(x.device.index):
        _layer_norm_bwd_kernel[grid](
            x,
            weight,
            bias,
            y,
            dy,
            dx,
            _dw,
            _db,
            dresidual,
            weight1,
            dy1,
            dx1,
            _dw1,
            _db1,
            dresidual_in,
            rowscale,
            seeds,
            mean,
            rstd,
            x.stride(0),
            0 if not recompute_output else y.stride(0),
            dy.stride(0),
            dx.stride(0),
            dresidual.stride(0) if dresidual is not None else 0,
            dy1.stride(0) if dy1 is not None else 0,
            dx1.stride(0) if dx1 is not None else 0,
            dresidual_in.stride(0) if dresidual_in is not None else 0,
            M,
            N,
            eps,
            dropout_p,
            rows_per_program,
            is_rms_norm,
            BLOCK_N,
            dresidual is not None,
            dresidual_in is not None,
            bias is not None,
            dropout_p > 0.0,
        )
    dw = _dw.sum(0).to(weight.dtype)
    db = _db.sum(0).to(bias.dtype) if bias is not None else None
    dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None
    db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None
    # Don't need to compute dresidual_in separately in this case
    if has_residual and dx.dtype == x.dtype and dropout_p == 0.0 and rowscale is None:
        dresidual_in = dx
    if has_x1 and dropout_p == 0.0:
        dx1 = dx
    return (
        (dx, dw, db, dresidual_in, dx1, dw1, db1)
        if not recompute_output
        else (dx, dw, db, dresidual_in, dx1, dw1, db1, y)
    )


class LayerNormFn(torch.autograd.Function):
    @staticmethod
    def forward(

        ctx,

        x,

        weight,

        bias,

        residual=None,

        x1=None,

        weight1=None,

        bias1=None,

        eps=1e-6,

        dropout_p=0.0,

        rowscale=None,

        prenorm=False,

        residual_in_fp32=False,

        is_rms_norm=False,

        return_dropout_mask=False,

    ):
        x_shape_og = x.shape
        # reshape input data into 2D tensor
        x = x.reshape(-1, x.shape[-1])
        if x.stride(-1) != 1:
            x = x.contiguous()
        if residual is not None:
            assert residual.shape == x_shape_og
            residual = residual.reshape(-1, residual.shape[-1])
            if residual.stride(-1) != 1:
                residual = residual.contiguous()
        if x1 is not None:
            assert x1.shape == x_shape_og
            assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
            x1 = x1.reshape(-1, x1.shape[-1])
            if x1.stride(-1) != 1:
                x1 = x1.contiguous()
        weight = weight.contiguous()
        if bias is not None:
            bias = bias.contiguous()
        if weight1 is not None:
            weight1 = weight1.contiguous()
        if bias1 is not None:
            bias1 = bias1.contiguous()
        if rowscale is not None:
            rowscale = rowscale.reshape(-1).contiguous()
        residual_dtype = (
            residual.dtype
            if residual is not None
            else (torch.float32 if residual_in_fp32 else None)
        )
        y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
            x,
            weight,
            bias,
            eps,
            residual,
            x1,
            weight1,
            bias1,
            dropout_p=dropout_p,
            rowscale=rowscale,
            residual_dtype=residual_dtype,
            is_rms_norm=is_rms_norm,
            return_dropout_mask=return_dropout_mask,
        )
        ctx.save_for_backward(
            residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd
        )
        ctx.x_shape_og = x_shape_og
        ctx.eps = eps
        ctx.dropout_p = dropout_p
        ctx.is_rms_norm = is_rms_norm
        ctx.has_residual = residual is not None
        ctx.has_x1 = x1 is not None
        ctx.prenorm = prenorm
        ctx.x_dtype = x.dtype
        y = y.reshape(x_shape_og)
        y1 = y1.reshape(x_shape_og) if y1 is not None else None
        residual_out = residual_out.reshape(x_shape_og) if residual_out is not None else None
        dropout_mask = dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None
        dropout_mask1 = dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None
        if not return_dropout_mask:
            if weight1 is None:
                return y if not prenorm else (y, residual_out)
            else:
                return (y, y1) if not prenorm else (y, y1, residual_out)
        else:
            if weight1 is None:
                return (
                    (y, dropout_mask, dropout_mask1)
                    if not prenorm
                    else (y, residual_out, dropout_mask, dropout_mask1)
                )
            else:
                return (
                    (y, y1, dropout_mask, dropout_mask1)
                    if not prenorm
                    else (y, y1, residual_out, dropout_mask, dropout_mask1)
                )

    @staticmethod
    def backward(ctx, dy, *args):
        x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors
        dy = dy.reshape(-1, dy.shape[-1])
        if dy.stride(-1) != 1:
            dy = dy.contiguous()
        assert dy.shape == x.shape
        if weight1 is not None:
            dy1, args = args[0], args[1:]
            dy1 = dy1.reshape(-1, dy1.shape[-1])
            if dy1.stride(-1) != 1:
                dy1 = dy1.contiguous()
            assert dy1.shape == x.shape
        else:
            dy1 = None
        if ctx.prenorm:
            dresidual = args[0]
            dresidual = dresidual.reshape(-1, dresidual.shape[-1])
            if dresidual.stride(-1) != 1:
                dresidual = dresidual.contiguous()
            assert dresidual.shape == x.shape
        else:
            dresidual = None
        dx, dw, db, dresidual_in, dx1, dw1, db1 = _layer_norm_bwd(
            dy,
            x,
            weight,
            bias,
            ctx.eps,
            mean,
            rstd,
            dresidual,
            dy1,
            weight1,
            bias1,
            seeds,
            ctx.dropout_p,
            rowscale,
            ctx.has_residual,
            ctx.has_x1,
            ctx.is_rms_norm,
            x_dtype=ctx.x_dtype,
        )
        return (
            dx.reshape(ctx.x_shape_og),
            dw,
            db,
            dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
            dx1.reshape(ctx.x_shape_og) if dx1 is not None else None,
            dw1,
            db1,
            None,
            None,
            None,
            None,
            None,
            None,
            None,
        )


def layer_norm_fn(

    x,

    weight,

    bias,

    residual=None,

    x1=None,

    weight1=None,

    bias1=None,

    eps=1e-6,

    dropout_p=0.0,

    rowscale=None,

    prenorm=False,

    residual_in_fp32=False,

    is_rms_norm=False,

    return_dropout_mask=False,

):
    return LayerNormFn.apply(
        x,
        weight,
        bias,
        residual,
        x1,
        weight1,
        bias1,
        eps,
        dropout_p,
        rowscale,
        prenorm,
        residual_in_fp32,
        is_rms_norm,
        return_dropout_mask,
    )


def rms_norm_fn(

    x,

    weight,

    bias,

    residual=None,

    x1=None,

    weight1=None,

    bias1=None,

    eps=1e-6,

    dropout_p=0.0,

    rowscale=None,

    prenorm=False,

    residual_in_fp32=False,

    return_dropout_mask=False,

):
    return LayerNormFn.apply(
        x,
        weight,
        bias,
        residual,
        x1,
        weight1,
        bias1,
        eps,
        dropout_p,
        rowscale,
        prenorm,
        residual_in_fp32,
        True,
        return_dropout_mask,
    )


class RMSNorm(torch.nn.Module):

    def __init__(self, hidden_size, eps=1e-5, dropout_p=0.0, device=None, dtype=None):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.eps = eps
        if dropout_p > 0.0:
            self.drop = torch.nn.Dropout(dropout_p)
        else:
            self.drop = None
        self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
        self.register_parameter("bias", None)
        self.reset_parameters()

    def reset_parameters(self):
        torch.nn.init.ones_(self.weight)

    def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
        return rms_norm_fn(
            x,
            self.weight,
            self.bias,
            residual=residual,
            eps=self.eps,
            dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
            prenorm=prenorm,
            residual_in_fp32=residual_in_fp32,
        )


class LayerNormLinearFn(torch.autograd.Function):
    @staticmethod
    @custom_fwd
    def forward(

        ctx,

        x,

        norm_weight,

        norm_bias,

        linear_weight,

        linear_bias,

        residual=None,

        eps=1e-6,

        prenorm=False,

        residual_in_fp32=False,

        is_rms_norm=False,

    ):
        x_shape_og = x.shape
        # reshape input data into 2D tensor
        x = x.reshape(-1, x.shape[-1])
        if x.stride(-1) != 1:
            x = x.contiguous()
        if residual is not None:
            assert residual.shape == x_shape_og
            residual = residual.reshape(-1, residual.shape[-1])
            if residual.stride(-1) != 1:
                residual = residual.contiguous()
        norm_weight = norm_weight.contiguous()
        if norm_bias is not None:
            norm_bias = norm_bias.contiguous()
        residual_dtype = (
            residual.dtype
            if residual is not None
            else (torch.float32 if residual_in_fp32 else None)
        )
        y, _, mean, rstd, residual_out, *rest = _layer_norm_fwd(
            x,
            norm_weight,
            norm_bias,
            eps,
            residual,
            out_dtype=None if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype(),
            residual_dtype=residual_dtype,
            is_rms_norm=is_rms_norm,
        )
        y = y.reshape(x_shape_og)
        dtype = torch.get_autocast_gpu_dtype() if torch.is_autocast_enabled() else y.dtype
        linear_weight = linear_weight.to(dtype)
        linear_bias = linear_bias.to(dtype) if linear_bias is not None else None
        out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
        # We don't store y, will be recomputed in the backward pass to save memory
        ctx.save_for_backward(residual_out, norm_weight, norm_bias, linear_weight, mean, rstd)
        ctx.x_shape_og = x_shape_og
        ctx.eps = eps
        ctx.is_rms_norm = is_rms_norm
        ctx.has_residual = residual is not None
        ctx.prenorm = prenorm
        ctx.x_dtype = x.dtype
        ctx.linear_bias_is_none = linear_bias is None
        return out if not prenorm else (out, residual_out.reshape(x_shape_og))

    @staticmethod
    @custom_bwd
    def backward(ctx, dout, *args):
        x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
        dout = dout.reshape(-1, dout.shape[-1])
        dy = F.linear(dout, linear_weight.t())
        dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
        if dy.stride(-1) != 1:
            dy = dy.contiguous()
        assert dy.shape == x.shape
        if ctx.prenorm:
            dresidual = args[0]
            dresidual = dresidual.reshape(-1, dresidual.shape[-1])
            if dresidual.stride(-1) != 1:
                dresidual = dresidual.contiguous()
            assert dresidual.shape == x.shape
        else:
            dresidual = None
        dx, dnorm_weight, dnorm_bias, dresidual_in, _, _, _, y = _layer_norm_bwd(
            dy,
            x,
            norm_weight,
            norm_bias,
            ctx.eps,
            mean,
            rstd,
            dresidual=dresidual,
            has_residual=ctx.has_residual,
            is_rms_norm=ctx.is_rms_norm,
            x_dtype=ctx.x_dtype,
            recompute_output=True,
        )
        dlinear_weight = torch.einsum("bo,bi->oi", dout, y)
        return (
            dx.reshape(ctx.x_shape_og),
            dnorm_weight,
            dnorm_bias,
            dlinear_weight,
            dlinear_bias,
            dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
            None,
            None,
            None,
            None,
        )


def layer_norm_linear_fn(

    x,

    norm_weight,

    norm_bias,

    linear_weight,

    linear_bias,

    residual=None,

    eps=1e-6,

    prenorm=False,

    residual_in_fp32=False,

    is_rms_norm=False,

):
    return LayerNormLinearFn.apply(
        x,
        norm_weight,
        norm_bias,
        linear_weight,
        linear_bias,
        residual,
        eps,
        prenorm,
        residual_in_fp32,
        is_rms_norm,
    )