File size: 6,217 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# The triton fused matmul + sqrelu is faster for fp16 but slower for bf16, compared
# to naive implementation.
import fused_dense_lib as fused_dense_cuda
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import custom_bwd, custom_fwd

from flash_attn.ops.activations import sqrelu_bwd, sqrelu_fwd
from flash_attn.ops.triton.linear import triton_dgrad_act, triton_linear_act


class FusedDenseSqreluDenseFunc(torch.autograd.Function):
    @staticmethod
    @custom_fwd
    def forward(ctx, x, weight1, bias1, weight2, bias2, checkpoint_lvl=0):
        """checkpoint_lvl:

        0: no recomputation in the bwd

        1: recompute gelu_out in the bwd

        2: recompute act_input and gelu_out in the bwd

        """
        if torch.is_autocast_enabled():
            dtype = torch.get_autocast_gpu_dtype()
            x, weight1, bias1, weight2, bias2 = [
                a.to(dtype=dtype) for a in [x, weight1, bias1, weight2, bias2]
            ]
        is_bf16 = x.dtype == torch.bfloat16
        assert checkpoint_lvl in [0, 1, 2]
        x = x.contiguous()
        weight1 = weight1.contiguous()
        bias1 = bias1.contiguous()
        weight2 = weight2.contiguous()
        bias2 = bias2.contiguous()
        batch_shape, n = x.shape[:-1], x.shape[-1]
        batch_dim = batch_shape.numel()
        if is_bf16:
            act_input = fused_dense_cuda.linear_bias_forward(
                x.reshape(batch_dim, n), weight1, bias1
            )
            output1 = sqrelu_fwd(act_input)
        else:
            save_act_input = checkpoint_lvl != 2
            result = triton_linear_act(
                x.reshape(batch_dim, n),
                weight1,
                bias1,
                activation="squared_relu",
                save_act_input=save_act_input,
            )
            if save_act_input:
                output1, act_input = result
            else:
                output1 = result
        output2 = fused_dense_cuda.linear_bias_forward(output1, weight2, bias2)
        ctx.checkpoint_lvl = checkpoint_lvl
        if checkpoint_lvl == 0:
            ctx.save_for_backward(x, weight1, bias1, weight2, act_input, output1)
        elif checkpoint_lvl == 1:
            ctx.save_for_backward(x, weight1, bias1, weight2, act_input)
        elif checkpoint_lvl == 2:
            ctx.save_for_backward(x, weight1, bias1, weight2)
        return output2.reshape(*batch_shape, output2.shape[-1])

    @staticmethod
    @custom_bwd
    def backward(ctx, grad_output):
        grad_output = grad_output.contiguous()
        checkpoint_lvl = ctx.checkpoint_lvl
        x, weight1, bias1, weight2, *rest = ctx.saved_tensors
        batch_shape, n = x.shape[:-1], x.shape[-1]
        batch_dim = batch_shape.numel()
        is_bf16 = x.dtype == torch.bfloat16
        if checkpoint_lvl == 0:
            act_input, output1 = rest
        elif checkpoint_lvl == 1:
            (act_input,) = rest
            output1 = sqrelu_fwd(act_input)
        elif checkpoint_lvl == 2:
            if is_bf16:
                act_input = fused_dense_cuda.linear_bias_forward(
                    x.reshape(batch_dim, n), weight1, bias1
                )
                output1 = sqrelu_fwd(act_input)
            else:
                output1, act_input = triton_linear_act(
                    x.reshape(batch_dim, n),
                    weight1,
                    bias1,
                    activation="squared_relu",
                    save_act_input=True,
                )

        if is_bf16:
            grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
            grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output)
            grad_output1 = grad_output @ weight2
            grad_act_input = sqrelu_bwd(grad_output1, act_input)
            grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward(
                x.reshape(batch_dim, n), weight1, grad_act_input
            )
        else:
            grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
            grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output)
            grad_act_input = triton_dgrad_act(
                grad_output, weight2, activation="squared_relu", act_input=act_input
            )
            grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward(
                x.reshape(batch_dim, n), weight1, grad_act_input
            )
        return grad_input.reshape_as(x), grad_weight1, grad_bias1, grad_weight2, grad_bias2, None


fused_dense_sqrelu_dense_function = FusedDenseSqreluDenseFunc.apply


class FusedDenseSqreluDense(nn.Module):
    def __init__(

        self,

        in_features,

        hidden_features=None,

        out_features=None,

        bias1=True,

        bias2=True,

        checkpoint_lvl=0,

        device=None,

        dtype=None,

    ):
        """

        checkpoint_lvl (increasing lvl means slower but more memory saving):

            0: no recomputation in the bwd

            1: recompute gelu_out in the bwd

            2: recompute gelu_in and gelu_out in the bwd

        """
        assert checkpoint_lvl in [0, 1, 2]
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features * 4
        assert bias1 == True, "DenseSqreluDense module without bias is currently not supported"
        assert bias2 == True, "DenseSqreluDense module without bias is currently not supported"
        self.checkpoint_lvl = checkpoint_lvl
        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)

    def forward(self, x):
        assert x.is_cuda
        return fused_dense_sqrelu_dense_function(
            x, self.fc1.weight, self.fc1.bias, self.fc2.weight, self.fc2.bias, self.checkpoint_lvl
        )