File size: 31,434 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
# Copyright (c) 2023, Tri Dao.
# Adapted from https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/forward_step.py#L31
import gc
import time
from collections import namedtuple
from dataclasses import dataclass, field
from functools import partial
from typing import Callable, Optional, Sequence, Union

import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from torch import Tensor
from torch.profiler import ProfilerActivity, profile, record_function

try:
    from transformers.generation import GreedySearchDecoderOnlyOutput, SampleDecoderOnlyOutput
except ImportError:
    GreedySearchDecoderOnlyOutput = namedtuple("GreedySearchDecoderOnlyOutput", ["sequences", "scores"])
    SampleDecoderOnlyOutput = namedtuple("SampleDecoderOnlyOutput", ["sequences", "scores"])


@dataclass
class InferenceParams:
    """Inference parameters that are passed to the main model in order

    to efficienly calculate and store the context during inference."""

    max_seqlen: int
    max_batch_size: int
    seqlen_offset: int = 0
    batch_size_offset: int = 0
    key_value_memory_dict: dict = field(default_factory=dict)
    lengths_per_sample: Optional[Tensor] = None

    def reset(self, max_seqlen, max_batch_size):
        self.max_seqlen = max_seqlen
        self.max_batch_size = max_batch_size
        self.seqlen_offset = 0
        if self.lengths_per_sample is not None:
            self.lengths_per_sample.zero_()


# https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
# https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L231
def modify_logits_for_top_k_filtering(logits, top_k):
    """Set the logits for none top-k values to -inf. Done in-place."""
    indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
    logits.masked_fill_(indices_to_remove, float("-Inf"))


# https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
# https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L170
def modify_logits_for_top_p_filtering(logits, top_p):
    """Set the logits for none top-p values to -inf. Done in-place."""
    if top_p <= 0.0 or top_p >= 1.0:
        return
    # First sort and calculate cumulative sum of probabilities.
    sorted_logits, sorted_indices = torch.sort(logits, descending=False)
    cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
    # Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
    sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
    # scatter sorted tensors to original indexing
    indices_to_remove = sorted_indices_to_remove.scatter(
        1, sorted_indices, sorted_indices_to_remove
    )
    logits.masked_fill_(indices_to_remove, float("-inf"))


def sample(logits, top_k=1, top_p=0.0, temperature=1.0):
    """Sample from top-k logits.

    Arguments:

        logits: Tensor of shape (batch_size, vocab_size)

    """
    if top_k == 1:  # Short-circuit for greedy decoding
        return logits.argmax(dim=-1)
    else:
        if top_p > 0.0:
            assert top_p <= 1.0, "top-p should be in (0, 1]."
        if top_k > 0:
            top_k = min(top_k, logits.size(-1))  # Safety check
            logits_top, indices = torch.topk(logits, top_k, dim=-1)
            if temperature != 1.0:
                logits_top /= temperature
            modify_logits_for_top_p_filtering(logits_top, top_p)
            return indices[
                torch.arange(indices.shape[0], device=indices.device),
                torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1),
            ]
        else:
            # Clone so that when we modify for top_p we don't change the original logits
            logits_top = logits / temperature if temperature != 1.0 else logits.clone()
            modify_logits_for_top_p_filtering(logits_top, top_p)
            return torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(
                dim=-1
            )


@torch.inference_mode()
def decode(

    input_ids,

    model,

    max_length,

    top_k=1,

    top_p=0.0,

    temperature=1.0,

    eos_token_id=None,

    teacher_outputs=None,

    vocab_size=None,

    tensor_parallel=1,

    cg=False,

    enable_timing=False,

):
    """Decoding, either greedy or with top-k or top-p sampling.

    If top-k = 0, don't limit the number of candidates (pure sampling).

    Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,

    then top-p.

    We assume that all sequences in the same batch have the same length.



    Arguments:

        input_ids: (batch, seq_len)

        max_length: int

        teacher_outputs (optional): (batch, seq_len). If provided, instead of sampling from the

            logits, the next token is taken from the teacher_outputs. Useful for testing.

    Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields:

        sequences: (batch, max_length)

        scores: tuples of (batch, vocab_size)

    """
    batch_size, seqlen_og = input_ids.shape
    teacher_output_len = teacher_outputs.shape[1] if teacher_outputs is not None else 0
    if cg:
        if not hasattr(model, "_decoding_cache"):
            model._decoding_cache = None
        model._decoding_cache = update_graph_cache(
            model,
            model._decoding_cache,
            batch_size,
            seqlen_og,
            max_length,
            tensor_parallel=tensor_parallel,
        )
        inference_params = model._decoding_cache.inference_params
        inference_params.reset(max_length, batch_size)
    else:
        inference_params = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)

    def get_logits(input_ids, inference_params):
        decoding = inference_params.seqlen_offset > 0
        if decoding:
            position_ids = torch.full(
                (batch_size, 1),
                inference_params.seqlen_offset,
                dtype=torch.long,
                device=input_ids.device,
            )
        else:
            position_ids = None
        if not cg or not decoding:
            logits = model(
                input_ids,
                position_ids=position_ids,
                inference_params=inference_params,
                num_last_tokens=1,
            ).logits.squeeze(dim=1)
        else:
            logits = model._decoding_cache.run(
                input_ids, position_ids, inference_params.seqlen_offset
            ).squeeze(dim=1)
        return logits[..., :vocab_size] if vocab_size is not None else logits

    def sample_tokens(logits, inference_params):
        if teacher_outputs is None or teacher_output_len <= inference_params.seqlen_offset:
            token = sample(logits, top_k=top_k, top_p=top_p, temperature=temperature)
        else:
            token = teacher_outputs[:, inference_params.seqlen_offset]
        # return rearrange(token, "b -> b 1")
        return token.unsqueeze(1)

    def should_stop(current_token, inference_params):
        if inference_params.seqlen_offset == 0:
            return False
        if eos_token_id is not None and (current_token == eos_token_id).all():
            return True
        if inference_params.seqlen_offset >= max_length - 1:
            return True
        return False

    start = torch.cuda.Event(enable_timing=enable_timing)
    end = torch.cuda.Event(enable_timing=enable_timing)

    if enable_timing:
        if tensor_parallel > 1:
            torch.distributed.barrier()
        start.record()
    scores, sequences = [], [input_ids]
    while not should_stop(sequences[-1], inference_params):
        scores.append(get_logits(sequences[-1], inference_params))
        inference_params.seqlen_offset += sequences[-1].shape[1]
        sequences.append(sample_tokens(scores[-1], inference_params))
    if enable_timing:
        end.record()
        if tensor_parallel > 1:
            torch.distributed.barrier()
        torch.cuda.synchronize()
        print(f"Prompt processing + decoding time: {(start.elapsed_time(end)):.0f}ms")
    output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
    return output_cls(sequences=torch.cat(sequences, dim=1), scores=tuple(scores))


def sample_speculative(logits, logits_draft, tokens_draft, top_k=1, top_p=0.0, temperature=1.0):
    """Algorithm 1 from [1]

    [1] Fast Inference from Transformers via Speculative Decoding

    Yaniv Leviathan, Matan Kalman, Yossi Matias

    https://arxiv.org/abs/2211.17192



    Arguments:

        logits: Tensor of shape (batch_size, seqlen + 1, vocab_size)

        logits_draft: Tensor of shape (batch_size, seqlen, vocab_size)

        tokens_draft: Tensor of shape (batch_size, seqlen)

    Return:

        tokens: Tensor of shape (batch_size, seqlen + 1)

        num_generated_tokens: Tensor of shape (batch_size), with value in [1, seqlen + 1].

            For each sequence in the batch, the number of valid tokens that were sampled by

            speculative sampling.

    """
    batch, seqlen_p_1, vocab_size = logits.shape
    seqlen = seqlen_p_1 - 1
    assert logits_draft.shape == (batch, seqlen, vocab_size)
    assert tokens_draft.shape == (batch, seqlen)
    assert tokens_draft.dtype in [torch.int64, torch.int32]
    # TODO: if top_k = 1 we can simplify things and only work with indices
    if top_p > 0.0:
        assert top_p <= 1.0, "top-p should be in (0, 1]."
    # Clone so that when we modify for top_p we don't change the original logits
    logits = logits / temperature if temperature != 1.0 else logits.clone()
    logits_draft = logits_draft / temperature if temperature != 1.0 else logits_draft.clone()
    if top_k > 0:
        top_k = min(top_k, logits.size(-1))  # Safety check
        modify_logits_for_top_k_filtering(logits, top_k)
        modify_logits_for_top_k_filtering(logits_draft, top_k)
    modify_logits_for_top_p_filtering(logits, top_p)
    modify_logits_for_top_p_filtering(logits_draft, top_p)
    probs = torch.softmax(logits, dim=-1)
    probs_draft = torch.softmax(logits_draft, dim=-1)
    gather = lambda probs, tokens: rearrange(
        probs.gather(dim=-1, index=rearrange(tokens, "... -> ... 1")), "... 1 -> ..."
    )
    # (batch, seqlen)
    accepted = torch.rand(batch, seqlen, device=probs.device) * gather(
        probs_draft, tokens_draft
    ) <= gather(probs[:, :-1], tokens_draft)
    accepted_all = accepted.all(dim=-1)
    # (batch,)
    first_rejected_idx = torch.where(accepted_all, seqlen, accepted.int().argmin(dim=-1))
    probs_diff = torch.clamp(probs[:, :-1] - probs_draft, min=0.0)
    # torch.multinomial can deal with unnormalized probabilities
    # probs_diff /= probs_diff.sum(dim=-1, keepdim=True)
    resample_probs = torch.cat([probs_diff, probs[:, -1:]], dim=1)
    resample_probs = rearrange(
        resample_probs.gather(dim=1, index=repeat(first_rejected_idx, "b -> b 1 d", d=vocab_size)),
        "b 1 d -> b d",
    )
    resample = torch.multinomial(resample_probs, num_samples=1).squeeze(dim=-1)  # (batch,)
    tokens = F.pad(tokens_draft, (0, 1))
    tokens[:, first_rejected_idx] = resample
    return tokens, first_rejected_idx + 1


@torch.inference_mode()
def decode_speculative(

    input_ids,

    model,

    model_draft,

    max_length,

    speculative_lookahead=3,

    top_k=1,

    top_p=0.0,

    temperature=1.0,

    eos_token_id=None,

    vocab_size=None,

    tensor_parallel=1,

    cg=False,

    enable_timing=False,

    debug=False,

):
    """

    TD: WIP, for my own understanding, lightly tested. Only support batch_size == 1 for now.



    Speculative decoding, either greedy or with top-k or top-p sampling.

    If top-k = 0, don't limit the number of candidates (pure sampling).

    Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,

    then top-p.

    We assume that all sequences in the same batch have the same length.



    Arguments:

        input_ids: (batch, seq_len)

        max_length: int

    Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields:

        sequences: (batch, max_length)

        scores: tuples of (batch, vocab_size)

    """
    batch_size, seqlen_og = input_ids.shape
    assert batch_size == 1, "Speculative decoding implementation only supports batch_size=1"
    assert eos_token_id is None, "Speculative decoding implementation doesn't support eos_token_id"
    if cg:
        if not hasattr(model_draft, "_decoding_cache"):
            model_draft._decoding_cache = None
        model_draft._decoding_cache = update_graph_cache(
            model_draft,
            model_draft._decoding_cache,
            batch_size,
            seqlen_og,
            max_length,
            # draft model needs to process either 1 or 2 tokens at a time
            decoding_seqlens=(1, 2),
            tensor_parallel=tensor_parallel,
        )
        inference_params_draft = model_draft._decoding_cache.inference_params
        inference_params_draft.reset(max_length, batch_size)
        if not hasattr(model, "_decoding_cache"):
            model._decoding_cache = None
        model._decoding_cache = update_graph_cache(
            model,
            model._decoding_cache,
            batch_size,
            seqlen_og,
            max_length,
            decoding_seqlens=range(1, speculative_lookahead + 2),
            tensor_parallel=tensor_parallel,
        )
        inference_params = model._decoding_cache.inference_params
        inference_params.reset(max_length, batch_size)
    else:
        inference_params_draft = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)
        inference_params = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)

    def get_logits(input_ids, inference_params, model, num_last_tokens=1, cg=False):
        decoding = inference_params.seqlen_offset > 0
        if decoding:
            seqlen = input_ids.shape[1]
            # if inference_params.lengths_per_sample is None:
            # TODO: in the case of batched decoding where each sequence has a different length,
            # we need to compute the position_ids for each sequence using lengths_per_sample
            if True:
                cache_seqlens = torch.full(
                    (input_ids.shape[0],),
                    inference_params.seqlen_offset,
                    dtype=torch.int32,
                    device=input_ids.device,
                )
            else:
                cache_seqlens = inference_params.lengths_per_sample
            position_ids = cache_seqlens[:, None] + torch.arange(
                seqlen, dtype=torch.long, device=input_ids.device
            )
        else:
            position_ids = None
        if not cg or not decoding:
            logits = model(
                input_ids,
                position_ids=position_ids,
                inference_params=inference_params,
                num_last_tokens=num_last_tokens,
            ).logits
        else:
            # NOTE: careful, CUDA graph is set to have num_last_tokens=input_ids.shape[1].
            # This might not be compatible the num_last_tokens used here.
            assert num_last_tokens <= input_ids.shape[1]
            logits = model._decoding_cache.run(
                input_ids, position_ids, inference_params.seqlen_offset
            )[:, -num_last_tokens:]
        return logits[..., :vocab_size] if vocab_size is not None else logits

    def sample_tokens(input_ids, get_logits_fn, inference_params, sample_fn, num_tokens=1):
        """Sample `num_tokens` tokens from the model, given the previous logits.

        Also return the logits of the sampled tokens.

        Arguments:

            input_ids: (batch, seqlen)

        Return:

            tokens: (batch, num_tokens)

            scores: (batch, num_tokens), which contains @previous_logits and the logits of the next

                (num_tokens - 1) tokens. The logits of the last token isn't computed.

        """
        assert num_tokens >= 1
        sequences, scores = [input_ids], []
        for i in range(num_tokens):
            scores.append(get_logits_fn(sequences[-1], inference_params)[:, -1])
            inference_params.seqlen_offset += sequences[-1].shape[1]
            sequences.append(sample_fn(scores[-1]).unsqueeze(1))
        return torch.cat(sequences[1:], dim=1), torch.stack(scores, dim=1)

    sampling_kwargs = dict(top_k=top_k, top_p=top_p, temperature=temperature)
    sample_fn = partial(sample, **sampling_kwargs)
    get_logits_main = partial(get_logits, model=model, cg=cg)
    get_logits_draft = partial(get_logits, model=model_draft, cg=cg)
    sample_tokens_main = partial(
        sample_tokens,
        get_logits_fn=get_logits_main,
        sample_fn=sample_fn,
        inference_params=inference_params,
    )
    sample_tokens_draft = partial(
        sample_tokens,
        get_logits_fn=get_logits_draft,
        sample_fn=sample_fn,
        inference_params=inference_params_draft,
    )

    if debug:
        from transformers import AutoTokenizer

        tokenizer = AutoTokenizer.from_pretrained("gpt2")
    if enable_timing:
        if tensor_parallel > 1:
            torch.distributed.barrier()
        torch.cuda.synchronize()
        start = time.time()

    sequences, scores = [input_ids], []
    num_main_model_calls = 0
    num_draft_tokens = 0
    num_accepted_tokens_history = []
    if seqlen_og >= max_length - 1:
        # Don't do speculative sampling, just sample 1 token from the model
        tokens, scores_new = sample_tokens_main(input_ids, num_tokens=1)
        sequences.append(tokens)
        scores.append(scores_new)
    else:
        # Sample from draft model, which produces @n_spec_tokens, and @model
        # will then use to produce between 1 and 1 + @n_spec_tokens tokens.
        # We want seqlen_og + 1 + @n_spec_tokens to be <= @max_length.
        n_spec_tokens = min(speculative_lookahead, max_length - seqlen_og - 1)
        tokens_draft, scores_draft = sample_tokens_draft(input_ids, num_tokens=n_spec_tokens)
        num_draft_tokens += n_spec_tokens
        if debug:
            scores_draft_ref = model_draft(
                torch.cat([input_ids, tokens_draft], dim=1), num_last_tokens=n_spec_tokens + 1
            ).logits
            print((scores_draft - scores_draft_ref[:, :-1]).abs().max())

        # Evaluate the draft tokens with the model
        logits = get_logits_main(
            torch.cat([input_ids, tokens_draft], dim=1),
            inference_params,
            num_last_tokens=n_spec_tokens + 1,
        )
        num_main_model_calls += 1
        if debug:
            logits_ref = model(
                torch.cat([input_ids, tokens_draft], dim=1), num_last_tokens=n_spec_tokens + 1
            ).logits
            print((logits - logits_ref).abs().max())
            # breakpoint()
        tokens, num_generated_tokens = sample_speculative(
            logits, scores_draft, tokens_draft, **sampling_kwargs
        )
        num_accepted_tokens_history.append(num_generated_tokens - 1)
        if debug:
            print(tokens)
            print(num_generated_tokens)
            # breakpoint()
        # TODO: we're using the fact that batch_size == 1
        # TODO: check eos_token_id
        sequences.append(tokens[:1, : num_generated_tokens[0]])
        scores.append(logits[:1, : num_generated_tokens[0]])
        # Note that @model has not evaluated the last sampled token yet, so we'll need to pass
        # that in the next time we call @model.
        num_generated = num_generated_tokens[0].item()
        inference_params.seqlen_offset = seqlen_og + num_generated - 1
        inference_params_draft.seqlen_offset = (
            inference_params.seqlen_offset - 1
            if num_generated > 1
            else inference_params.seqlen_offset
        )
        if debug:
            cur_ids = torch.cat([input_ids, sequences[-1]], dim=1)
            scores_ref = model(cur_ids, num_last_tokens=num_generated_tokens[0].item() + 1).logits
            print((scores[-1] - scores_ref[:, :-1]).abs().max())
            # breakpoint()

    while True:
        # seqlen_offset is total length generated - 1
        if inference_params.seqlen_offset >= max_length - 1:
            break
        if inference_params.seqlen_offset >= max_length - 2:
            # Don't do speculative sampling, just sample 1 token from the model
            tokens, scores_new = sample_tokens_main(sequences[-1][:, -1:], num_tokens=1)
            sequences.append(tokens)
            scores.append(scores_new)
            break
        # Sample from draft model
        n_spec_tokens = min(
            speculative_lookahead, max_length - inference_params_draft.seqlen_offset - 2
        )
        # If the main model accepts all the draft tokens, plus it samples one new token,
        # then at the next iteration the draft model need to evaluate the logits of the last draft
        # token and the logits of the newly sampled token. So here we pass in the last 2 tokens
        # of sequences[-1].
        # This exception is when the main model rejects all the draft tokens, in which case we
        # will only have 1 token to pass in.
        tokens_draft, scores_draft = sample_tokens_draft(
            sequences[-1][:, -2:], num_tokens=n_spec_tokens
        )
        num_draft_tokens += n_spec_tokens
        if debug:
            scores_draft_ref = model_draft(
                torch.cat([cur_ids, tokens_draft], dim=1), num_last_tokens=n_spec_tokens + 1
            ).logits
            print((scores_draft - scores_draft_ref[:, :-1]).abs().max())
            # breakpoint()
        # Evaluate the draft tokens with the model
        logits = get_logits_main(
            torch.cat([sequences[-1][:, -1:], tokens_draft], dim=1),
            inference_params,
            num_last_tokens=n_spec_tokens + 1,
        )  # (batch, n_spec_tokens + 1, vocab_size)
        num_main_model_calls += 1
        if debug:
            logits_ref = model(
                torch.cat([cur_ids, tokens_draft], dim=1), num_last_tokens=n_spec_tokens + 1
            ).logits
            print((logits - logits_ref).abs().max())
            # breakpoint()
        tokens, num_generated_tokens = sample_speculative(
            logits, scores_draft, tokens_draft, **sampling_kwargs
        )
        num_accepted_tokens_history.append(num_generated_tokens - 1)
        if debug:
            print(tokens)
            print(num_generated_tokens)
            # breakpoint()
        sequences.append(tokens[:1, : num_generated_tokens[0]])
        scores.append(logits[:1, : num_generated_tokens[0]])
        # We've evaluated 1 token from sequences[-1][:, -1:] above, plus
        # num_generated_tokens[0].item() - 1 tokens from the draft model.
        num_generated = num_generated_tokens[0].item()
        inference_params.seqlen_offset += num_generated
        inference_params_draft.seqlen_offset = (
            inference_params.seqlen_offset - 1
            if num_generated > 1
            else inference_params.seqlen_offset
        )
        if debug:
            cur_ids = torch.cat([cur_ids, sequences[-1]], dim=1)
            scores_ref = model(cur_ids, num_last_tokens=num_generated_tokens[0].item() + 1).logits
            print((scores[-1] - scores_ref[:, :-1]).abs().max())
            # breakpoint()

    if enable_timing:
        if tensor_parallel > 1:
            torch.distributed.barrier()
        torch.cuda.synchronize()
        print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
        print(f"Number of calls to main model: {num_main_model_calls}")
        print(
            f"Acceptance rate: {torch.cat(num_accepted_tokens_history).sum().item() / num_draft_tokens * 100:.2f}%"
        )
    sequences = torch.cat(sequences, dim=1)
    scores = torch.cat(scores, dim=1)
    if debug:
        scores_ref = model(sequences).logits
        print((scores - scores_ref[:, seqlen_og - 1 : -1]).abs().max())
    output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
    return output_cls(sequences=sequences, scores=scores)


class GenerationMixin:
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        raise NotImplementedError

    def generate(

        self,

        input_ids,

        max_length,

        top_k=1,

        top_p=0.0,

        temperature=1.0,

        return_dict_in_generate=False,

        output_scores=False,

        **kwargs,

    ):
        output = decode(
            input_ids, self, max_length, top_k=top_k, top_p=top_p, temperature=temperature, **kwargs
        )
        if not output_scores:
            output.scores = None
        return output if return_dict_in_generate else output.sequences


def allocate_inference_cache(

    max_batch_size,

    max_seqlen,

    nheads,

    headdim,

    layers: Union[int, Sequence],

    device,

    dtype=torch.float16,

):
    assert dtype in [torch.float16, torch.bfloat16, torch.float32]
    kv_cache_shape = (max_batch_size, max_seqlen, 2, nheads, headdim)
    if isinstance(layers, int):
        layers = range(layers)
    return {i: torch.empty(kv_cache_shape, device=device, dtype=dtype) for i in layers}


@dataclass
class DecodingCGCache:
    max_batch_size: int = 0
    max_seqlen: int = 0
    device = None
    dtype = None
    callables: dict = field(default_factory=dict)
    mempool = None
    inference_params: Optional[InferenceParams] = None
    run: Optional[Callable] = None


@torch.inference_mode()
def update_graph_cache(

    model,

    cache,

    batch_size,

    seqlen_og,

    max_seqlen,

    decoding_seqlens=(1,),

    tensor_parallel=1,

    dtype=None,

    n_warmups=2,

):
    if cache is None:
        cache = DecodingCGCache()
    param_example = next(iter(model.parameters()))
    device = param_example.device
    if dtype is None:
        dtype = param_example.dtype
    if (
        (device, dtype) != (cache.device, cache.dtype)
        or batch_size > cache.max_batch_size
        or max_seqlen > cache.max_seqlen
    ):  # Invalidate the cache
        cache.callables = {}
        cache.mempool = None
        cache.inference_params = None
        gc.collect()
        cache.device, cache.dtype = device, dtype
        cache.max_batch_size, cache.max_seqlen = batch_size, max_seqlen
        if hasattr(model, "allocate_inference_cache"):
            inf_cache = model.allocate_inference_cache(batch_size, max_seqlen, dtype)
        else:
            headdim = getattr(
                model.config,
                "head_dim",
                model.config.hidden_size // model.config.num_attention_heads,
            )
            inf_cache = allocate_inference_cache(
                batch_size,
                max_seqlen,
                model.config.num_attention_heads // tensor_parallel,
                headdim,
                model.config.num_hidden_layers,
                device,
                dtype,
            )
        lengths_per_sample = torch.full((batch_size,), seqlen_og, dtype=torch.int32, device=device)
        cache.inference_params = InferenceParams(
            max_seqlen=max_seqlen,
            max_batch_size=batch_size,
            seqlen_offset=seqlen_og,
            key_value_memory_dict=inf_cache,
            lengths_per_sample=lengths_per_sample,
        )
        cache.mempool = torch.cuda.graphs.graph_pool_handle()
    for decoding_seqlen in decoding_seqlens:
        if (batch_size, decoding_seqlen) not in cache.callables:
            cache.callables[batch_size, decoding_seqlen] = capture_graph(
                model,
                cache.inference_params,
                batch_size,
                max_seqlen,
                decoding_seqlen=decoding_seqlen,
                mempool=cache.mempool,
                n_warmups=n_warmups,
            )

    def dispatch(input_ids, position_ids, seqlen):
        batch_size, decoding_seqlen = input_ids.shape[:2]
        return cache.callables[batch_size, decoding_seqlen](input_ids, position_ids, seqlen)

    cache.run = dispatch
    cache.inference_params.seqlen_offset = 0  # Reset so it's not confusing
    return cache


def capture_graph(

    model, inference_params, batch_size, max_seqlen, decoding_seqlen=1, mempool=None, n_warmups=2

):
    device = next(iter(model.parameters())).device
    input_ids = torch.full((batch_size, decoding_seqlen), 0, dtype=torch.long, device=device)
    position_ids = torch.full((batch_size, decoding_seqlen), 0, dtype=torch.long, device=device)
    seqlen_offset_og = inference_params.seqlen_offset
    inference_params.seqlen_offset = max_seqlen - decoding_seqlen
    inference_params.lengths_per_sample[:] = inference_params.seqlen_offset

    # Warmup before capture
    s = torch.cuda.Stream()
    s.wait_stream(torch.cuda.current_stream())
    with torch.cuda.stream(s):
        for _ in range(n_warmups):
            logits = model(
                input_ids,
                position_ids=position_ids,
                inference_params=inference_params,
                num_last_tokens=decoding_seqlen,
            ).logits
        s.synchronize()
        # This might be needed for correctness if we run with NCCL_GRAPH_MIXING_SUPPORT=0,
        # which requires that graph launch and non-captured launch to not overlap (I think,
        # that's how I interpret the documentation). I'm not sure if this is required.
        if torch.distributed.is_initialized():
            torch.distributed.barrier()
    torch.cuda.current_stream().wait_stream(s)
    # Captures the graph
    # To allow capture, automatically sets a side stream as the current stream in the context
    graph = torch.cuda.CUDAGraph()
    with torch.cuda.graph(graph, pool=mempool):
        logits = model(
            input_ids,
            position_ids=position_ids,
            inference_params=inference_params,
            num_last_tokens=decoding_seqlen,
        ).logits

    def run(new_input_ids, new_position_ids, seqlen):
        inference_params.lengths_per_sample[:] = seqlen
        input_ids.copy_(new_input_ids)
        position_ids.copy_(new_position_ids)
        graph.replay()
        return logits.clone()

    inference_params.seqlen_offset = seqlen_offset_og
    return run