File size: 14,428 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import re
from collections import OrderedDict

import pytest
import torch
import torch.nn.functional as F
from einops import rearrange
from transformers import BertConfig
from transformers.models.bert.modeling_bert import BertForPreTraining as BertForPreTrainingHF
from transformers.models.bert.modeling_bert import BertModel as BertModelHF

from flash_attn.models.bert import (
    BertForPreTraining,
    BertModel,
    inv_remap_state_dict,
    remap_state_dict,
)
from flash_attn.utils.pretrained import state_dict_from_pretrained


@pytest.mark.parametrize("model_name", ["bert-base-uncased", "bert-large-uncased"])
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"])
def test_bert_state_dict(model_name):
    config = BertConfig.from_pretrained(model_name)
    pretrained_state_dict = remap_state_dict(state_dict_from_pretrained(model_name), config)
    model = BertForPreTraining(config)
    state_dict = model.state_dict()
    assert state_dict.keys() == pretrained_state_dict.keys()
    for k in state_dict.keys():
        assert state_dict[k].shape == pretrained_state_dict[k].shape


def get_hf_models(model_name, config, dtype):
    pretrained_state_dict = state_dict_from_pretrained(model_name)

    def key_mapping_ln_gamma_beta(key):
        key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
        key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
        return key

    pretrained_state_dict = OrderedDict(
        (key_mapping_ln_gamma_beta(k), v) for k, v in pretrained_state_dict.items()
    )
    model_hf = BertForPreTrainingHF(config)
    # Missing key(s) in state_dict: "bert.embeddings.position_ids", "cls.predictions.decoder.bias"
    # position_ids is a buffer, and predictions.decoder.bias is tied to predictions.bias.
    model_hf.load_state_dict(pretrained_state_dict, strict=False)
    model_hf.cuda().to(dtype=dtype)
    return model_hf


@pytest.mark.parametrize("model_name", ["bert-base-uncased"])
def test_bert_non_optimized(model_name):
    """Check that our implementation of BERT (without any optimizations enabled) matches the

    HF implementation: the output of our forward pass in fp16 should be around the same as the HF

    forward pass in fp16, when compared to the HF forward pass in fp32.

    """
    dtype = torch.float16
    config = BertConfig.from_pretrained(model_name)

    model = BertForPreTraining.from_pretrained(model_name, config)
    model = model.cuda().to(dtype=dtype)

    model_ref = get_hf_models(model_name, config, torch.float32)
    model_hf = get_hf_models(model_name, config, dtype)

    model.eval()
    model_ref.eval()
    model_hf.eval()

    torch.manual_seed(0)
    batch_size = 4
    max_seqlen = 512
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda")
    attention_mask = torch.arange(max_seqlen, device="cuda")[None, :] < seqlens[:, None]
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
    )
    out = model.bert(input_ids, attention_mask=attention_mask)
    sequence_output, pooled_output = out.last_hidden_state, out.pooler_output
    out_hf = model_hf.bert(input_ids, attention_mask=attention_mask)
    sequence_output_hf, pooled_output_hf = out_hf.last_hidden_state, out_hf.pooler_output
    out_ref = model_ref.bert(input_ids, attention_mask=attention_mask)
    sequence_output_ref, pooled_output_ref = out_ref.last_hidden_state, out_ref.pooler_output

    print(f"Output max diff: {(sequence_output - sequence_output_ref).abs().max().item()}")
    print(f"Output mean diff: {(sequence_output - sequence_output_ref).abs().mean().item()}")
    print(f"HF fp16 max diff: {(sequence_output_hf - sequence_output_ref).abs().max().item()}")
    print(f"HF fp16 mean diff: {(sequence_output_hf - sequence_output_ref).abs().mean().item()}")
    assert (sequence_output - sequence_output_ref).abs().max().item() < 3 * (
        sequence_output_hf - sequence_output_ref
    ).abs().max().item()
    assert (pooled_output - pooled_output_ref).abs().max().item() < 3 * (
        pooled_output_hf - pooled_output_ref
    ).abs().max().item()


@pytest.mark.parametrize("model_name", ["bert-base-uncased", "bert-large-uncased"])
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"])
def test_bert_optimized(model_name):
    """Check that our implementation of BERT (with all optimizations enabled) matches the

    HF implementation: the output of our forward pass in fp16 should be around the same as the HF

    forward pass in fp16, when compared to the HF forward pass in fp32.

    """
    dtype = torch.float16
    config = BertConfig.from_pretrained(model_name)
    # Our implementation of fused_mlp assumes the activation is
    # nn.GELU(approximate='tanh'). Huggingface calls it "gelu_new", "gelu_fast", or "gelu_pytorch_tanh".
    # If you just want "gelu", disable fused_mlp.
    config.hidden_act = "gelu_new"
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = True
    config.fused_dropout_add_ln = True

    model = BertForPreTraining.from_pretrained(model_name, config)
    model = model.cuda().to(dtype=dtype)

    model_ref = get_hf_models(model_name, config, torch.float32)
    model_hf = get_hf_models(model_name, config, dtype)

    model.eval()
    model_ref.eval()
    model_hf.eval()

    torch.manual_seed(0)
    batch_size = 4
    max_seqlen = 512
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda")
    attention_mask = torch.arange(max_seqlen, device="cuda")[None, :] < seqlens[:, None]
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
    )
    out = model.bert(input_ids, attention_mask=attention_mask)
    sequence_output, pooled_output = out.last_hidden_state, out.pooler_output
    out_hf = model_hf.bert(input_ids, attention_mask=attention_mask)
    sequence_output_hf, pooled_output_hf = out_hf.last_hidden_state, out_hf.pooler_output
    # Need to zero out the padded tokens in the sequence before comparison.
    sequence_output_hf[~attention_mask, :] = 0.0
    out_ref = model_ref.bert(input_ids, attention_mask=attention_mask)
    sequence_output_ref, pooled_output_ref = out_ref.last_hidden_state, out_ref.pooler_output
    sequence_output_ref[~attention_mask, :] = 0.0

    print(
        f"BertModel output max diff: {(sequence_output - sequence_output_ref).abs().max().item()}"
    )
    print(
        f"BertModel output mean diff: {(sequence_output - sequence_output_ref).abs().mean().item()}"
    )
    print(
        f"HF fp16 BertModel max diff: {(sequence_output_hf - sequence_output_ref).abs().max().item()}"
    )
    print(
        f"HF fp16 BertModel mean diff: {(sequence_output_hf - sequence_output_ref).abs().mean().item()}"
    )
    assert (sequence_output - sequence_output_ref).abs().max().item() < 4 * (
        sequence_output_hf - sequence_output_ref
    ).abs().max().item()
    assert (pooled_output - pooled_output_ref).abs().max().item() < 4 * (
        pooled_output_hf - pooled_output_ref
    ).abs().max().item()

    out = model(input_ids, attention_mask=attention_mask)
    prediction_scores, seq_relationship_scores = out.prediction_logits, out.seq_relationship_logits
    # Need to zero out the padded tokens in the sequence before comparison.
    prediction_scores = prediction_scores.clone()
    prediction_scores[~attention_mask, :] = 0.0
    out_hf = model_hf(input_ids, attention_mask=attention_mask)
    prediction_scores_hf, seq_relationship_scores_hf = (
        out_hf.prediction_logits,
        out_hf.seq_relationship_logits,
    )
    prediction_scores_hf[~attention_mask, :] = 0.0
    out_ref = model_ref(input_ids, attention_mask=attention_mask)
    prediction_scores_ref, seq_relationship_scores_ref = (
        out_ref.prediction_logits,
        out_ref.seq_relationship_logits,
    )
    prediction_scores_ref[~attention_mask, :] = 0.0

    print(
        f"prediction_scores max diff: {(prediction_scores - prediction_scores_ref).abs().max().item()}"
    )
    print(
        f"prediction_scores mean diff: {(prediction_scores - prediction_scores_ref).abs().mean().item()}"
    )
    print(
        f"HF fp16 prediction_scoresff: {(prediction_scores_hf - prediction_scores_ref).abs().max().item()}"
    )
    print(
        f"HF fp16 prediction_scoresiff: {(prediction_scores_hf - prediction_scores_ref).abs().mean().item()}"
    )
    assert (prediction_scores - prediction_scores_ref).abs().max().item() < 2 * (
        prediction_scores_hf - prediction_scores_ref
    ).abs().max().item()
    assert (seq_relationship_scores - seq_relationship_scores_ref).abs().max().item() < 2 * (
        seq_relationship_scores_hf - seq_relationship_scores_ref
    ).abs().max().item()


@pytest.mark.parametrize("last_layer_subset", [False, True])
# @pytest.mark.parametrize('last_layer_subset', [True])
@pytest.mark.parametrize("has_key_padding_mask", [True, False])
# @pytest.mark.parametrize('has_key_padding_mask', [True])
@pytest.mark.parametrize("model_name", ["bert-base-uncased", "bert-large-uncased"])
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"])
def test_bert_dense_seq_output(model_name, has_key_padding_mask, last_layer_subset):
    """Check that our implementation of BERT (with all optimizations enabled) matches the

    HF implementation: the output of our forward pass in fp16 should be around the same as the HF

    forward pass in fp16, when compared to the HF forward pass in fp32.

    """
    dtype = torch.float16
    config = BertConfig.from_pretrained(model_name)
    # Our implementation of fused_mlp assumes the activation is
    # nn.GELU(approximate='tanh'). Huggingface calls it "gelu_new", "gelu_fast", or "gelu_pytorch_tanh".
    # If you just want "gelu", disable fused_mlp.
    config.hidden_act = "gelu_new"
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = True
    config.fused_dropout_add_ln = True
    config.dense_seq_output = True
    config.last_layer_subset = last_layer_subset
    config.use_xentropy = True

    model = BertForPreTraining.from_pretrained(model_name, config)
    model = model.cuda().to(dtype=dtype)

    model_ref = get_hf_models(model_name, config, torch.float32)
    model_hf = get_hf_models(model_name, config, dtype)

    model.eval()
    model_ref.eval()
    model_hf.eval()

    torch.manual_seed(0)
    batch_size = 4
    max_seqlen = 512
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda")
    if has_key_padding_mask:
        attention_mask = torch.arange(max_seqlen, device="cuda")[None, :] < seqlens[:, None]
    else:
        attention_mask = None
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
    )
    labels = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
    )
    if attention_mask is not None:
        labels[~attention_mask] = 0
    labels[(torch.rand(batch_size, max_seqlen, device="cuda") > 0.15)] = 0
    masked_tokens_mask = labels.flatten() > 0
    next_sequence_label = torch.randint(0, 2, (batch_size,), device="cuda")

    out = model(
        input_ids,
        attention_mask=attention_mask,
        labels=labels,
        next_sentence_label=next_sequence_label,
    )
    prediction_scores, seq_relationship_scores = out.prediction_logits, out.seq_relationship_logits
    out_hf = model_hf(
        input_ids,
        attention_mask=attention_mask,
        labels=labels,
        next_sentence_label=next_sequence_label,
    )
    prediction_scores_hf, seq_relationship_scores_hf = (
        out_hf.prediction_logits,
        out_hf.seq_relationship_logits,
    )
    prediction_scores_hf = rearrange(prediction_scores_hf, "b s d -> (b s) d")[masked_tokens_mask]
    out_ref = model_ref(
        input_ids,
        attention_mask=attention_mask,
        labels=labels,
        next_sentence_label=next_sequence_label,
    )
    prediction_scores_ref, seq_relationship_scores_ref = (
        out_ref.prediction_logits,
        out_ref.seq_relationship_logits,
    )
    prediction_scores_ref = rearrange(prediction_scores_ref, "b s d -> (b s) d")[masked_tokens_mask]

    print(
        f"prediction_scores max diff: {(prediction_scores - prediction_scores_ref).abs().max().item()}"
    )
    print(
        f"prediction_scores mean diff: {(prediction_scores - prediction_scores_ref).abs().mean().item()}"
    )
    print(
        f"HF fp16 prediction_scoresff: {(prediction_scores_hf - prediction_scores_ref).abs().max().item()}"
    )
    print(
        f"HF fp16 prediction_scoresiff: {(prediction_scores_hf - prediction_scores_ref).abs().mean().item()}"
    )
    assert (prediction_scores - prediction_scores_ref).abs().max().item() < 2 * (
        prediction_scores_hf - prediction_scores_ref
    ).abs().max().item()
    assert (seq_relationship_scores - seq_relationship_scores_ref).abs().max().item() < 2 * (
        seq_relationship_scores_hf - seq_relationship_scores_ref
    ).abs().max().item()
    # The loss calculation from HF is wrong: it doesn't ignore the labels that are 0.
    # assert (out.loss - out_ref.loss).abs().max().item() < 2 * (out_hf.loss - out_ref.loss).abs().max().item()


@pytest.mark.parametrize("model_name", ["bert-base-uncased", "bert-large-uncased"])
def test_inv_remap_state_dict(model_name: str):
    """

    Verify that we can convert a HF BERT model to flash_attn and back.

    """

    state_dict = state_dict_from_pretrained(model_name)
    config = BertConfig.from_pretrained(model_name)

    flash_state_dict = remap_state_dict(state_dict, config)
    recovered_state_dict = inv_remap_state_dict(flash_state_dict, config)

    assert set(state_dict.keys()) == set(recovered_state_dict.keys())

    for k in state_dict.keys():
        assert state_dict[k].shape == recovered_state_dict[k].shape
        torch.testing.assert_close(state_dict[k], recovered_state_dict[k], rtol=1e-6, atol=1e-6)