Spaces:
Sleeping
Sleeping
File size: 14,428 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import re
from collections import OrderedDict
import pytest
import torch
import torch.nn.functional as F
from einops import rearrange
from transformers import BertConfig
from transformers.models.bert.modeling_bert import BertForPreTraining as BertForPreTrainingHF
from transformers.models.bert.modeling_bert import BertModel as BertModelHF
from flash_attn.models.bert import (
BertForPreTraining,
BertModel,
inv_remap_state_dict,
remap_state_dict,
)
from flash_attn.utils.pretrained import state_dict_from_pretrained
@pytest.mark.parametrize("model_name", ["bert-base-uncased", "bert-large-uncased"])
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"])
def test_bert_state_dict(model_name):
config = BertConfig.from_pretrained(model_name)
pretrained_state_dict = remap_state_dict(state_dict_from_pretrained(model_name), config)
model = BertForPreTraining(config)
state_dict = model.state_dict()
assert state_dict.keys() == pretrained_state_dict.keys()
for k in state_dict.keys():
assert state_dict[k].shape == pretrained_state_dict[k].shape
def get_hf_models(model_name, config, dtype):
pretrained_state_dict = state_dict_from_pretrained(model_name)
def key_mapping_ln_gamma_beta(key):
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
return key
pretrained_state_dict = OrderedDict(
(key_mapping_ln_gamma_beta(k), v) for k, v in pretrained_state_dict.items()
)
model_hf = BertForPreTrainingHF(config)
# Missing key(s) in state_dict: "bert.embeddings.position_ids", "cls.predictions.decoder.bias"
# position_ids is a buffer, and predictions.decoder.bias is tied to predictions.bias.
model_hf.load_state_dict(pretrained_state_dict, strict=False)
model_hf.cuda().to(dtype=dtype)
return model_hf
@pytest.mark.parametrize("model_name", ["bert-base-uncased"])
def test_bert_non_optimized(model_name):
"""Check that our implementation of BERT (without any optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
config = BertConfig.from_pretrained(model_name)
model = BertForPreTraining.from_pretrained(model_name, config)
model = model.cuda().to(dtype=dtype)
model_ref = get_hf_models(model_name, config, torch.float32)
model_hf = get_hf_models(model_name, config, dtype)
model.eval()
model_ref.eval()
model_hf.eval()
torch.manual_seed(0)
batch_size = 4
max_seqlen = 512
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda")
attention_mask = torch.arange(max_seqlen, device="cuda")[None, :] < seqlens[:, None]
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
)
out = model.bert(input_ids, attention_mask=attention_mask)
sequence_output, pooled_output = out.last_hidden_state, out.pooler_output
out_hf = model_hf.bert(input_ids, attention_mask=attention_mask)
sequence_output_hf, pooled_output_hf = out_hf.last_hidden_state, out_hf.pooler_output
out_ref = model_ref.bert(input_ids, attention_mask=attention_mask)
sequence_output_ref, pooled_output_ref = out_ref.last_hidden_state, out_ref.pooler_output
print(f"Output max diff: {(sequence_output - sequence_output_ref).abs().max().item()}")
print(f"Output mean diff: {(sequence_output - sequence_output_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(sequence_output_hf - sequence_output_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(sequence_output_hf - sequence_output_ref).abs().mean().item()}")
assert (sequence_output - sequence_output_ref).abs().max().item() < 3 * (
sequence_output_hf - sequence_output_ref
).abs().max().item()
assert (pooled_output - pooled_output_ref).abs().max().item() < 3 * (
pooled_output_hf - pooled_output_ref
).abs().max().item()
@pytest.mark.parametrize("model_name", ["bert-base-uncased", "bert-large-uncased"])
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"])
def test_bert_optimized(model_name):
"""Check that our implementation of BERT (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
config = BertConfig.from_pretrained(model_name)
# Our implementation of fused_mlp assumes the activation is
# nn.GELU(approximate='tanh'). Huggingface calls it "gelu_new", "gelu_fast", or "gelu_pytorch_tanh".
# If you just want "gelu", disable fused_mlp.
config.hidden_act = "gelu_new"
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
model = BertForPreTraining.from_pretrained(model_name, config)
model = model.cuda().to(dtype=dtype)
model_ref = get_hf_models(model_name, config, torch.float32)
model_hf = get_hf_models(model_name, config, dtype)
model.eval()
model_ref.eval()
model_hf.eval()
torch.manual_seed(0)
batch_size = 4
max_seqlen = 512
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda")
attention_mask = torch.arange(max_seqlen, device="cuda")[None, :] < seqlens[:, None]
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
)
out = model.bert(input_ids, attention_mask=attention_mask)
sequence_output, pooled_output = out.last_hidden_state, out.pooler_output
out_hf = model_hf.bert(input_ids, attention_mask=attention_mask)
sequence_output_hf, pooled_output_hf = out_hf.last_hidden_state, out_hf.pooler_output
# Need to zero out the padded tokens in the sequence before comparison.
sequence_output_hf[~attention_mask, :] = 0.0
out_ref = model_ref.bert(input_ids, attention_mask=attention_mask)
sequence_output_ref, pooled_output_ref = out_ref.last_hidden_state, out_ref.pooler_output
sequence_output_ref[~attention_mask, :] = 0.0
print(
f"BertModel output max diff: {(sequence_output - sequence_output_ref).abs().max().item()}"
)
print(
f"BertModel output mean diff: {(sequence_output - sequence_output_ref).abs().mean().item()}"
)
print(
f"HF fp16 BertModel max diff: {(sequence_output_hf - sequence_output_ref).abs().max().item()}"
)
print(
f"HF fp16 BertModel mean diff: {(sequence_output_hf - sequence_output_ref).abs().mean().item()}"
)
assert (sequence_output - sequence_output_ref).abs().max().item() < 4 * (
sequence_output_hf - sequence_output_ref
).abs().max().item()
assert (pooled_output - pooled_output_ref).abs().max().item() < 4 * (
pooled_output_hf - pooled_output_ref
).abs().max().item()
out = model(input_ids, attention_mask=attention_mask)
prediction_scores, seq_relationship_scores = out.prediction_logits, out.seq_relationship_logits
# Need to zero out the padded tokens in the sequence before comparison.
prediction_scores = prediction_scores.clone()
prediction_scores[~attention_mask, :] = 0.0
out_hf = model_hf(input_ids, attention_mask=attention_mask)
prediction_scores_hf, seq_relationship_scores_hf = (
out_hf.prediction_logits,
out_hf.seq_relationship_logits,
)
prediction_scores_hf[~attention_mask, :] = 0.0
out_ref = model_ref(input_ids, attention_mask=attention_mask)
prediction_scores_ref, seq_relationship_scores_ref = (
out_ref.prediction_logits,
out_ref.seq_relationship_logits,
)
prediction_scores_ref[~attention_mask, :] = 0.0
print(
f"prediction_scores max diff: {(prediction_scores - prediction_scores_ref).abs().max().item()}"
)
print(
f"prediction_scores mean diff: {(prediction_scores - prediction_scores_ref).abs().mean().item()}"
)
print(
f"HF fp16 prediction_scoresff: {(prediction_scores_hf - prediction_scores_ref).abs().max().item()}"
)
print(
f"HF fp16 prediction_scoresiff: {(prediction_scores_hf - prediction_scores_ref).abs().mean().item()}"
)
assert (prediction_scores - prediction_scores_ref).abs().max().item() < 2 * (
prediction_scores_hf - prediction_scores_ref
).abs().max().item()
assert (seq_relationship_scores - seq_relationship_scores_ref).abs().max().item() < 2 * (
seq_relationship_scores_hf - seq_relationship_scores_ref
).abs().max().item()
@pytest.mark.parametrize("last_layer_subset", [False, True])
# @pytest.mark.parametrize('last_layer_subset', [True])
@pytest.mark.parametrize("has_key_padding_mask", [True, False])
# @pytest.mark.parametrize('has_key_padding_mask', [True])
@pytest.mark.parametrize("model_name", ["bert-base-uncased", "bert-large-uncased"])
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"])
def test_bert_dense_seq_output(model_name, has_key_padding_mask, last_layer_subset):
"""Check that our implementation of BERT (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
config = BertConfig.from_pretrained(model_name)
# Our implementation of fused_mlp assumes the activation is
# nn.GELU(approximate='tanh'). Huggingface calls it "gelu_new", "gelu_fast", or "gelu_pytorch_tanh".
# If you just want "gelu", disable fused_mlp.
config.hidden_act = "gelu_new"
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
config.dense_seq_output = True
config.last_layer_subset = last_layer_subset
config.use_xentropy = True
model = BertForPreTraining.from_pretrained(model_name, config)
model = model.cuda().to(dtype=dtype)
model_ref = get_hf_models(model_name, config, torch.float32)
model_hf = get_hf_models(model_name, config, dtype)
model.eval()
model_ref.eval()
model_hf.eval()
torch.manual_seed(0)
batch_size = 4
max_seqlen = 512
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda")
if has_key_padding_mask:
attention_mask = torch.arange(max_seqlen, device="cuda")[None, :] < seqlens[:, None]
else:
attention_mask = None
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
)
labels = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
)
if attention_mask is not None:
labels[~attention_mask] = 0
labels[(torch.rand(batch_size, max_seqlen, device="cuda") > 0.15)] = 0
masked_tokens_mask = labels.flatten() > 0
next_sequence_label = torch.randint(0, 2, (batch_size,), device="cuda")
out = model(
input_ids,
attention_mask=attention_mask,
labels=labels,
next_sentence_label=next_sequence_label,
)
prediction_scores, seq_relationship_scores = out.prediction_logits, out.seq_relationship_logits
out_hf = model_hf(
input_ids,
attention_mask=attention_mask,
labels=labels,
next_sentence_label=next_sequence_label,
)
prediction_scores_hf, seq_relationship_scores_hf = (
out_hf.prediction_logits,
out_hf.seq_relationship_logits,
)
prediction_scores_hf = rearrange(prediction_scores_hf, "b s d -> (b s) d")[masked_tokens_mask]
out_ref = model_ref(
input_ids,
attention_mask=attention_mask,
labels=labels,
next_sentence_label=next_sequence_label,
)
prediction_scores_ref, seq_relationship_scores_ref = (
out_ref.prediction_logits,
out_ref.seq_relationship_logits,
)
prediction_scores_ref = rearrange(prediction_scores_ref, "b s d -> (b s) d")[masked_tokens_mask]
print(
f"prediction_scores max diff: {(prediction_scores - prediction_scores_ref).abs().max().item()}"
)
print(
f"prediction_scores mean diff: {(prediction_scores - prediction_scores_ref).abs().mean().item()}"
)
print(
f"HF fp16 prediction_scoresff: {(prediction_scores_hf - prediction_scores_ref).abs().max().item()}"
)
print(
f"HF fp16 prediction_scoresiff: {(prediction_scores_hf - prediction_scores_ref).abs().mean().item()}"
)
assert (prediction_scores - prediction_scores_ref).abs().max().item() < 2 * (
prediction_scores_hf - prediction_scores_ref
).abs().max().item()
assert (seq_relationship_scores - seq_relationship_scores_ref).abs().max().item() < 2 * (
seq_relationship_scores_hf - seq_relationship_scores_ref
).abs().max().item()
# The loss calculation from HF is wrong: it doesn't ignore the labels that are 0.
# assert (out.loss - out_ref.loss).abs().max().item() < 2 * (out_hf.loss - out_ref.loss).abs().max().item()
@pytest.mark.parametrize("model_name", ["bert-base-uncased", "bert-large-uncased"])
def test_inv_remap_state_dict(model_name: str):
"""
Verify that we can convert a HF BERT model to flash_attn and back.
"""
state_dict = state_dict_from_pretrained(model_name)
config = BertConfig.from_pretrained(model_name)
flash_state_dict = remap_state_dict(state_dict, config)
recovered_state_dict = inv_remap_state_dict(flash_state_dict, config)
assert set(state_dict.keys()) == set(recovered_state_dict.keys())
for k in state_dict.keys():
assert state_dict[k].shape == recovered_state_dict[k].shape
torch.testing.assert_close(state_dict[k], recovered_state_dict[k], rtol=1e-6, atol=1e-6)
|