Spaces:
Sleeping
Sleeping
File size: 10,126 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# Copyright (c) 2023, Tri Dao.
import time
import torch
import pytest
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
from flash_attn.models.gpt import GPTLMHeadModel
from flash_attn.models.btlm import btlm_config_to_gpt2_config, remap_state_dict_hf_btlm
from flash_attn.utils.pretrained import state_dict_from_pretrained
from flash_attn.utils.generation import update_graph_cache
@pytest.mark.parametrize("model_name", ["cerebras/btlm-3b-8k-base"])
def test_btlm_state_dict(model_name):
config = btlm_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
pretrained_state_dict = remap_state_dict_hf_btlm(state_dict_from_pretrained(model_name), config)
model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow
state_dict = model.state_dict()
assert len(state_dict.keys()) == len(pretrained_state_dict.keys())
assert state_dict.keys() == pretrained_state_dict.keys()
for k in state_dict.keys():
assert state_dict[k].shape == pretrained_state_dict[k].shape
@pytest.mark.parametrize("model_name", ["cerebras/btlm-3b-8k-base"])
def test_btlm_optimized(model_name):
"""Check that our implementation of Btlm (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
device = "cuda"
config = btlm_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
config.fused_bias_fc = True
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
pretrained_state_dict = remap_state_dict_hf_btlm(state_dict_from_pretrained(model_name), config)
model = GPTLMHeadModel(config, device=device, dtype=dtype)
model.load_state_dict(pretrained_state_dict)
model.eval()
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
)
with torch.no_grad():
out = model.transformer(input_ids)
logits = model(input_ids).logits
del model
# Without device_map, the model is loaded on the CPU, which is very slow
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
model_ref = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", trust_remote_code=True
)
model_ref.eval()
with torch.no_grad():
out_ref = model_ref.transformer(input_ids).last_hidden_state.to(device=device)
logits_ref = model_ref(input_ids).logits.to(device=device)
del model_ref
model_hf = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=dtype,
device_map={"": device},
trust_remote_code=True,
)
model_hf.eval()
with torch.no_grad():
out_hf = model_hf.transformer(input_ids).last_hidden_state
logits_hf = model_hf(input_ids).logits
del model_hf
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 3 * (
logits_hf - logits_ref
).abs().max().item()
@pytest.mark.parametrize("model_name", ["cerebras/btlm-3b-8k-base"])
def test_btlm_generation(model_name):
dtype = torch.float16
device = "cuda"
config = btlm_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
config.fused_bias_fc = True
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
eos_token_id = tokenizer.eos_token_id
torch.manual_seed(0)
batch_size = 1
seqlen = 2048
max_length = 2048 + 150
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
model_hf = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True
)
model_hf.eval()
print("HF fp16")
torch.cuda.synchronize()
start = time.time()
out_hf = model_hf.generate(
input_ids=input_ids,
max_length=max_length,
return_dict_in_generate=True,
output_scores=True,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
del model_hf
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
model_ref = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", trust_remote_code=True
)
model_ref.eval()
with torch.no_grad():
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1].to(device=device)
del model_ref
pretrained_state_dict = remap_state_dict_hf_btlm(state_dict_from_pretrained(model_name), config)
model = GPTLMHeadModel(config, device=device, dtype=dtype)
model.load_state_dict(pretrained_state_dict)
model.eval()
model(input_ids) # Warm up
print("Without CUDA graph")
torch.cuda.synchronize()
start = time.time()
out = model.generate(
input_ids=input_ids,
max_length=max_length,
eos_token_id=eos_token_id,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
teacher_outputs=out_hf.sequences,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
# Capture graph outside the timing loop
batch_size, seqlen_og = input_ids.shape
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
print("With CUDA graph")
torch.cuda.synchronize()
start = time.time()
out_cg = model.generate(
input_ids=input_ids,
max_length=max_length,
cg=True,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
teacher_outputs=out_hf.sequences,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
with torch.no_grad():
logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1]
logits_hf = torch.stack(out_hf.scores, dim=1)
logits = torch.stack(out.scores, dim=1)
logits_cg = torch.stack(out_cg.scores, dim=1)
del model
hf_error = (logits_hf - logits_ref).abs().max().item()
print(f"HF fp16 logits max diff: {hf_error}")
print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
assert torch.equal(logits_cg, logits)
@pytest.mark.parametrize("model_name", ["cerebras/btlm-3b-8k-base"])
def test_btlm_init(model_name):
dtype = torch.float32
device = "cuda"
btlm_config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
config = btlm_config_to_gpt2_config(btlm_config)
model = GPTLMHeadModel(config, device=device, dtype=dtype)
model_ref = AutoModelForCausalLM.from_config(btlm_config, trust_remote_code=True).to(device)
assert model.transformer.embeddings.word_embeddings.weight.mean().abs() < 1e-4
assert (
model.transformer.embeddings.word_embeddings.weight.std()
- model_ref.transformer.wte.weight.std()
).abs() < 1e-4
assert model.lm_head.weight.mean().abs() < 1e-4
assert (model.lm_head.weight.std() - model_ref.lm_head.weight.std()).abs() < 1e-4
for l in range(config.n_layer):
assert model.transformer.layers[l].mixer.Wqkv.weight.mean().abs() < 1e-4
assert (
model.transformer.layers[l].mixer.Wqkv.weight.std()
- model_ref.transformer.h[l].attn.c_attn.weight.std()
).abs() < 1e-4
assert model.transformer.layers[l].mixer.Wqkv.bias.abs().max() == 0.0
assert model.transformer.layers[l].mixer.out_proj.weight.mean().abs() < 1e-4
assert (
model.transformer.layers[l].mixer.out_proj.weight.std()
- model_ref.transformer.h[l].attn.c_proj.weight.std()
).abs() < 1e-4
assert model.transformer.layers[l].mixer.out_proj.bias.abs().max() == 0.0
assert model.transformer.layers[l].mlp.fc1.weight.mean().abs() < 1e-4
assert (
model.transformer.layers[l].mlp.fc1.weight.std()
- model_ref.transformer.h[l].mlp.c_fc.weight.std()
).abs() < 1e-4
assert model.transformer.layers[l].mlp.fc1.bias.abs().max() == 0.0
assert model.transformer.layers[l].mlp.fc2.weight.mean().abs() < 1e-4
assert (
model.transformer.layers[l].mlp.fc2.weight.std()
- model_ref.transformer.h[l].mlp.c_proj.weight.std()
).abs() < 1e-4
assert model.transformer.layers[l].mlp.fc2.bias.abs().max() == 0.0
|