File size: 6,827 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/models/test_gpt_generation_parallel.py -k "parallel"
import os
import re

import pytest
import torch
from einops import rearrange
from flash_attn.models.gpt import GPTLMHeadModel, remap_state_dict_hf_gpt2
from flash_attn.utils.distributed import all_gather_raw
from flash_attn.utils.pretrained import state_dict_from_pretrained
from transformers import GPT2Config, GPT2Tokenizer
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel as GPT2LMHeadModelHF


# @pytest.mark.parametrize('world_size', [1, 2, 4, 8])
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize('rotary', [False, True])
# @pytest.mark.parametrize("rotary", [False])
@pytest.mark.parametrize("model_name", ["gpt2"])
def test_tensor_parallel(model_name, rotary, world_size):
    """Check that our implementation of GPT2 generation matches the HF implementation:

    the scores in fp16 should be around the same as the HF scores in fp16, when compared to

    the HF scores in fp32.

    """
    dtype = torch.float16
    rtol, atol = 3e-3, 3e-1
    config = GPT2Config.from_pretrained(model_name)
    if rotary:
        config.n_positions = 0
        config.rotary_emb_dim = 64
    config.residual_in_fp32 = True
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = True
    config.fused_dropout_add_ln = True
    config.pad_vocab_size_multiple = 8 * world_size
    config.sequence_parallel = False  # Need to set this to False for generation

    os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
    device = f"cuda:{torch.distributed.get_rank()}"
    assert world_size <= torch.distributed.get_world_size()
    # Need this, otherwise when we capture the graph the process for GPU 1 would run on both
    # GPU0 and GPU1 and things would hang
    torch.cuda.set_device(device)

    from apex.transformer import parallel_state

    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    process_group = parallel_state.get_tensor_model_parallel_group()

    # if not rotary, we load the weight from HF but ignore the position embeddings.
    # The model would be nonsense but it doesn't matter for the test.
    model = GPTLMHeadModel.from_pretrained(
        model_name,
        config,
        strict=not rotary,
        device=device,
        dtype=dtype,
        process_group=process_group,
        world_size=world_size,
        rank=rank,
    )
    model.eval()

    if not rotary:
        model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device)
        model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device, dtype=dtype)
        model_ref.eval()
        model_hf.eval()

    torch.manual_seed(0)
    tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
    input_ids = tokenizer("Hello, my dog is cute and ", return_tensors="pt").input_ids.to(
        device=device
    )
    max_length = 30
    # input_ids = torch.randint(0, 100, (1, 10), dtype=torch.long, device='cuda')
    # max_length = input_ids.shape[1] + 40

    # Slow generation for reference
    sequences = []
    scores = []
    cur_input_ids = input_ids
    with torch.inference_mode():
        logits, _ = all_gather_raw(model(cur_input_ids).logits[:, -1], process_group)
        logits = rearrange(logits, "(n b) d -> b (n d)", b=input_ids.shape[0])[
            ..., : config.vocab_size
        ]
        scores.append(logits)
        sequences.append(scores[-1].argmax(dim=-1))
        for _ in range(input_ids.shape[1] + 1, max_length):
            cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], "b -> b 1")], dim=-1)
            logits, _ = all_gather_raw(model(cur_input_ids).logits[:, -1], process_group)
            logits = rearrange(logits, "(n b) d -> b (n d)", b=input_ids.shape[0])[
                ..., : config.vocab_size
            ]
            scores.append(logits)
            sequences.append(scores[-1].argmax(dim=-1))
    sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1)
    scores = tuple(scores)
    print(sequences)

    out = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        tensor_parallel=world_size,
        vocab_size=config.vocab_size,
        return_dict_in_generate=True,
        output_scores=True,
        enable_timing=True,
    )
    print(out.sequences)
    if getattr(config, "use_flash_attn", False):
        out_cg = model.generate(
            input_ids=input_ids,
            max_length=max_length,
            tensor_parallel=world_size,
            vocab_size=config.vocab_size,
            cg=True,
            return_dict_in_generate=True,
            output_scores=True,
            enable_timing=True,
        )
        print(out_cg.sequences)

    parallel_state.destroy_model_parallel()

    if not rotary:
        out_hf = model_hf.generate(
            input_ids=input_ids,
            max_length=max_length,
            return_dict_in_generate=True,
            output_scores=True,
        )
        out_ref = model_ref.generate(
            input_ids=input_ids,
            max_length=max_length,
            return_dict_in_generate=True,
            output_scores=True,
        )

        print(
            f"Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}"
        )
        print(
            f"Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}"
        )
        print(
            f"HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}"
        )
        print(
            f"HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}"
        )

    assert torch.all(out.sequences == sequences)
    assert torch.allclose(
        torch.stack(out.scores, dim=1), torch.stack(scores, dim=1), rtol=rtol, atol=atol
    )
    assert torch.equal(torch.stack(out.scores, dim=1), torch.stack(out_cg.scores, dim=1))
    if not rotary:
        assert torch.all(out.sequences == out_ref.sequences)
        assert torch.all(out.sequences == out_hf.sequences)

        assert (
            torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)
        ).abs().max().item() < 3 * (
            torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)
        ).abs().max().item()