Spaces:
Sleeping
Sleeping
File size: 27,122 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
# Copyright (c) 2023, Tri Dao.
# To run the huggingface implementation of LLaMa (1), we first need to convert the weights:
# https://github.com/huggingface/transformers/pull/21955
# python -m transformers.models.llama.convert_llama_weights_to_hf --input_dir $CHECKPOINT_DIR/llama --model_size 7B --output_dir $CHECKPOINT_DIR/llama/7B-hf
# and repeat for 13B, 30B, 65B
import os
import time
from pathlib import Path
current_dir = Path(__file__).parent.absolute()
import shutil
import pytest
import torch
from einops import rearrange
from flash_attn.models.gpt import GPTLMHeadModel, combine_state_dicts_tp, shard_state_dict_tp
from flash_attn.models.llama import (
config_from_checkpoint,
inv_remap_state_dict_hf_llama,
llama_config_to_gpt2_config,
remap_state_dict_hf_llama,
remap_state_dict_meta_llama,
state_dicts_from_checkpoint,
)
from flash_attn.utils.distributed import all_gather_raw
from flash_attn.utils.generation import update_graph_cache
from flash_attn.utils.pretrained import state_dict_from_pretrained
from transformers import LlamaConfig, LlamaTokenizer
from transformers.models.llama.modeling_llama import LlamaForCausalLM
from transformers import AutoConfig
def _pretrained_state_dict_from_checkpoint(checkpoint_path, model_name, config, checkpoint_format):
if checkpoint_format == "meta":
ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts]
pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
else:
pretrained_state_dict = state_dict_from_pretrained(
Path(checkpoint_path) / f"{model_name}-hf"
)
pretrained_state_dict = remap_state_dict_hf_llama(pretrained_state_dict, config)
return pretrained_state_dict
@pytest.mark.parametrize("model_name", ["7B"])
def test_llama_state_dict(model_name):
checkpoint_path = (
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
)
config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name))
ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
pretrained_state_dict = remap_state_dict_meta_llama(ckpt_state_dicts[0], config)
model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow
state_dict = model.state_dict()
assert state_dict.keys() == pretrained_state_dict.keys()
for k in state_dict.keys():
assert state_dict[k].shape == pretrained_state_dict[k].shape
# TinyLlama-1.1B is to test MQA
@pytest.mark.parametrize(
"model_name", ["meta-llama/Llama-2-7b-hf", "PY007/TinyLlama-1.1B-step-50K-105b"]
)
def test_inv_remap_state_dict_hf_llama(model_name):
config = llama_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
state_dict = state_dict_from_pretrained(model_name)
# inv_remap_state_dict_hf_llama should be the inverse of remap_state_dict_hf_llama
state_dict = {key: val for key, val in state_dict.items() if "rotary_emb.inv_freq" not in key}
pretrained_state_dict = remap_state_dict_hf_llama(state_dict, config)
state_dict_recover = inv_remap_state_dict_hf_llama(pretrained_state_dict, config)
assert set(state_dict_recover.keys()) == set(state_dict.keys())
for key in state_dict_recover.keys():
torch.testing.assert_close(state_dict_recover[key], state_dict[key])
# TinyLlama-1.1B is to test MQA
@pytest.mark.parametrize(
"model_name",
[
"7B", # Llama 1
"13B", # Llama 1
"meta-llama/Llama-2-13b-hf",
"codellama/CodeLlama-7b-hf",
"codellama/CodeLlama-13b-hf",
"codellama/CodeLlama-34b-hf",
"PY007/TinyLlama-1.1B-step-50K-105b",
],
)
def test_llama_optimized(model_name):
"""Check that our implementation of LLaMa (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
checkpoint_path = (
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
)
dtype = torch.float16
device = "cuda"
if "/" in model_name: # Download from HF
config = llama_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
else:
config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta")
config = llama_config_to_gpt2_config(config)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
if "/" in model_name: # Download from HF
pretrained_state_dict = remap_state_dict_hf_llama(
state_dict_from_pretrained(model_name), config
)
else:
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
checkpoint_path, model_name, config, checkpoint_format="meta"
)
model = GPTLMHeadModel(config, device=device, dtype=dtype)
model.load_state_dict(pretrained_state_dict)
model.eval()
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
)
with torch.no_grad():
out = model.transformer(input_ids)
logits = model(input_ids).logits
del model
# Without device_map, the model is loaded on the CPU, which is very slow
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
model_ref = LlamaForCausalLM.from_pretrained(
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
device_map="auto",
)
model_ref.eval()
with torch.no_grad():
out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
logits_ref = model_ref(input_ids).logits.to(device=device)
del model_ref
model_hf = LlamaForCausalLM.from_pretrained(
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
torch_dtype=dtype,
device_map={"": device},
)
model_hf.eval()
with torch.no_grad():
out_hf = model_hf.model(input_ids).last_hidden_state
logits_hf = model_hf(input_ids).logits
del model_hf
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 3 * (
logits_hf - logits_ref
).abs().max().item()
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "parallel"
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize(
"model_name", ["13B", "meta-llama/Llama-2-13b-hf", "codellama/CodeLlama-34b-hf"]
)
def test_llama_parallel(model_name, world_size):
"""Check that our implementation of LLaMa (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
from apex.transformer import parallel_state
checkpoint_path = (
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
)
dtype = torch.float16
if "/" in model_name: # Download from HF
config = llama_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
else:
config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta")
config = llama_config_to_gpt2_config(config)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
process_group = parallel_state.get_tensor_model_parallel_group()
if "/" in model_name: # Download from HF
pretrained_state_dict = remap_state_dict_hf_llama(
state_dict_from_pretrained(model_name), config
)
else:
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
checkpoint_path, model_name, config, checkpoint_format="meta"
)
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
model.eval()
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
)
with torch.no_grad():
out = model.transformer(input_ids)
out, _ = all_gather_raw(out, process_group=process_group)
out = rearrange(out, "(b s) d -> b s d", b=batch_size)
logits = model(input_ids).logits
logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
logits, _ = all_gather_raw(logits, process_group)
logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)
del model
if rank == 0:
# Without device_map, the model is loaded on the CPU, which is very slow
model_ref = LlamaForCausalLM.from_pretrained(
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
device_map="auto",
)
model_ref.eval()
with torch.no_grad():
out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
logits_ref = model_ref(input_ids).logits.to(device=device)
del model_ref
model_hf = LlamaForCausalLM.from_pretrained(
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
torch_dtype=dtype,
device_map="auto",
)
model_hf.eval()
with torch.no_grad():
out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
logits_hf = model_hf(input_ids).logits.to(device=device)
del model_hf
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 2 * (
logits_hf - logits_ref
).abs().max().item()
# @pytest.mark.parametrize('model_name', ["7B", "13B"])
@pytest.mark.parametrize("model_name", ["7B"])
@pytest.mark.parametrize("checkpoint_format", ["meta", "hf"])
def test_llama_generation(model_name, checkpoint_format):
checkpoint_path = (
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
)
dtype = torch.float16
device = "cuda"
config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format)
config = llama_config_to_gpt2_config(config)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
tokenizer = LlamaTokenizer.from_pretrained(Path(checkpoint_path) / f"{model_name}-hf")
eos_token_id = tokenizer.eos_token_id
torch.manual_seed(0)
batch_size = 1
seqlen = 100
max_length = 150
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
model_hf = LlamaForCausalLM.from_pretrained(
Path(checkpoint_path) / f"{model_name}-hf", torch_dtype=dtype, device_map={"": device}
)
model_hf.eval()
print("HF fp16")
torch.cuda.synchronize()
start = time.time()
out_hf = model_hf.generate(
input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
del model_hf
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
model_ref = LlamaForCausalLM.from_pretrained(
Path(checkpoint_path) / f"{model_name}-hf", device_map="auto"
)
model_ref.eval()
with torch.no_grad():
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1].to(device=device)
del model_ref
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
checkpoint_path, model_name, config, checkpoint_format
)
model = GPTLMHeadModel(config, device=device, dtype=dtype)
model.load_state_dict(pretrained_state_dict)
model.eval()
print("Without CUDA graph")
torch.cuda.synchronize()
start = time.time()
out = model.generate(
input_ids=input_ids,
max_length=max_length,
eos_token_id=eos_token_id,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
teacher_outputs=out_hf.sequences,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
# Capture graph outside the timing loop
batch_size, seqlen_og = input_ids.shape
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
print("With CUDA graph")
torch.cuda.synchronize()
start = time.time()
out_cg = model.generate(
input_ids=input_ids,
max_length=max_length,
cg=True,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
teacher_outputs=out_hf.sequences,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
with torch.no_grad():
logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1]
logits_hf = torch.stack(out_hf.scores, dim=1)
logits = torch.stack(out.scores, dim=1)
logits_cg = torch.stack(out_cg.scores, dim=1)
del model
hf_error = (logits_hf - logits_ref).abs().max().item()
print(f"HF fp16 logits max diff: {hf_error}")
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item()}")
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
assert torch.equal(logits_cg, logits)
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "llama_parallel_generation"
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize(
"model_name", ["13B", "meta-llama/Llama-2-13b-hf", "codellama/CodeLlama-34b-hf"]
)
def test_llama_parallel_generation(model_name, world_size):
"""Check that our implementation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
"""
from apex.transformer import parallel_state
checkpoint_path = (
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
)
dtype = torch.float16
if "/" in model_name: # Download from HF
config = llama_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
else:
config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta")
config = llama_config_to_gpt2_config(config)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
config.pad_vocab_size_multiple = 8 * world_size
config.sequence_parallel = False # Need to set this to False for generation
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
process_group = parallel_state.get_tensor_model_parallel_group()
torch.manual_seed(0)
batch_size = 1
seqlen = 100
max_length = 150
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
# GPU0 and GPU1 and things would hang
torch.cuda.set_device(device)
if "/" in model_name: # Download from HF
pretrained_state_dict = remap_state_dict_hf_llama(
state_dict_from_pretrained(model_name), config
)
else:
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
checkpoint_path, model_name, config, checkpoint_format="meta"
)
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
model.eval()
print("Without CUDA graph")
out = model.generate(
input_ids=input_ids,
max_length=max_length,
tensor_parallel=world_size,
vocab_size=config.vocab_size,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
)
# Capture graph outside the timing loop
batch_size, seqlen_og = input_ids.shape
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
print("With CUDA graph")
out_cg = model.generate(
input_ids=input_ids,
max_length=max_length,
tensor_parallel=world_size,
vocab_size=config.vocab_size,
cg=True,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
)
del model
parallel_state.destroy_model_parallel()
if rank == 0:
# Without device_map, the model is loaded on the CPU, which is very slow
model_hf = LlamaForCausalLM.from_pretrained(
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
torch_dtype=dtype,
device_map="auto",
)
model_hf.eval()
print("HF fp16")
torch.cuda.synchronize()
start = time.time()
with torch.inference_mode():
out_hf = model_hf.generate(
input_ids=input_ids,
max_length=max_length,
return_dict_in_generate=True,
output_scores=True,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
del model_hf
model_ref = LlamaForCausalLM.from_pretrained(
model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
device_map="auto",
)
model_ref.eval()
with torch.inference_mode():
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1]
del model_ref
logits_hf = torch.stack(out_hf.scores, dim=1)
logits = torch.stack(out.scores, dim=1)
logits_cg = torch.stack(out_cg.scores, dim=1)
hf_error = (logits_hf - logits_ref).abs().max().item()
print(f"HF fp16 logits max diff: {hf_error}")
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item()}")
assert torch.equal(logits_cg, logits)
@torch.no_grad()
@pytest.mark.parametrize("world_size", [2])
def test_llama_parallel_uneven_num_heads(world_size):
from apex.transformer import parallel_state
checkpoint_path = (
Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
)
num_attention_heads = world_size + 1
model_name = f"teeny-{num_attention_heads}-heads"
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
process_group = parallel_state.get_tensor_model_parallel_group()
dtype = torch.float16
llama_config = LlamaConfig(
hidden_size=256
* num_attention_heads, # ParallelGatedMlp hidden_features must be divisible by 256
intermediate_size=256 * num_attention_heads * 4,
num_hidden_layers=4,
num_attention_heads=num_attention_heads,
initializer_range=0.5, # Set crazy init range so we don't have near zero weights implying a vacuous test.
)
config = llama_config_to_gpt2_config(llama_config)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
)
# Create a shared test model.
if rank == 0:
LlamaForCausalLM(config=llama_config).save_pretrained(checkpoint_path / f"{model_name}-hf")
torch.distributed.barrier()
# Run the standard forward pass test.
pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
checkpoint_path, model_name, config, checkpoint_format="hf"
)
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
model.eval()
# TODO: Avoid duplicate code. Modularize the comparison of two forward pass diffs.
out = model.transformer(input_ids)
out, _ = all_gather_raw(out, process_group=process_group)
out = rearrange(out, "(b s) d -> b s d", b=batch_size)
logits = model(input_ids).logits
logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
logits, _ = all_gather_raw(logits, process_group)
logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)
if rank == 0:
model_ref = LlamaForCausalLM.from_pretrained(
Path(checkpoint_path) / f"{model_name}-hf", device_map={"": device}
)
model_ref = model_ref.to(device=device)
model_ref.eval()
out_ref = model_ref.model(input_ids).last_hidden_state
logits_ref = model_ref(input_ids).logits
del model_ref
model_hf = LlamaForCausalLM.from_pretrained(
Path(checkpoint_path) / f"{model_name}-hf", torch_dtype=dtype, device_map={"": device}
)
model_hf.eval()
out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
logits_hf = model_hf(input_ids).logits.to(device=device)
del model_hf
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 2 * (
logits_hf - logits_ref
).abs().max().item()
if os.path.exists(checkpoint_path / f"{model_name}-hf"):
shutil.rmtree(checkpoint_path / f"{model_name}-hf")
|