File size: 27,122 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
# Copyright (c) 2023, Tri Dao.

# To run the huggingface implementation of LLaMa (1), we first need to convert the weights:
# https://github.com/huggingface/transformers/pull/21955
# python -m transformers.models.llama.convert_llama_weights_to_hf --input_dir $CHECKPOINT_DIR/llama --model_size 7B --output_dir $CHECKPOINT_DIR/llama/7B-hf
# and repeat for 13B, 30B, 65B

import os
import time
from pathlib import Path

current_dir = Path(__file__).parent.absolute()

import shutil

import pytest
import torch
from einops import rearrange
from flash_attn.models.gpt import GPTLMHeadModel, combine_state_dicts_tp, shard_state_dict_tp
from flash_attn.models.llama import (
    config_from_checkpoint,
    inv_remap_state_dict_hf_llama,
    llama_config_to_gpt2_config,
    remap_state_dict_hf_llama,
    remap_state_dict_meta_llama,
    state_dicts_from_checkpoint,
)
from flash_attn.utils.distributed import all_gather_raw
from flash_attn.utils.generation import update_graph_cache
from flash_attn.utils.pretrained import state_dict_from_pretrained
from transformers import LlamaConfig, LlamaTokenizer
from transformers.models.llama.modeling_llama import LlamaForCausalLM
from transformers import AutoConfig


def _pretrained_state_dict_from_checkpoint(checkpoint_path, model_name, config, checkpoint_format):
    if checkpoint_format == "meta":
        ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
        pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts]
        pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
    else:
        pretrained_state_dict = state_dict_from_pretrained(
            Path(checkpoint_path) / f"{model_name}-hf"
        )
        pretrained_state_dict = remap_state_dict_hf_llama(pretrained_state_dict, config)
    return pretrained_state_dict


@pytest.mark.parametrize("model_name", ["7B"])
def test_llama_state_dict(model_name):
    checkpoint_path = (
        Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
    )
    config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name))
    ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
    pretrained_state_dict = remap_state_dict_meta_llama(ckpt_state_dicts[0], config)
    model = GPTLMHeadModel(config, device="meta")  # Without device='meta' init is very slow
    state_dict = model.state_dict()
    assert state_dict.keys() == pretrained_state_dict.keys()
    for k in state_dict.keys():
        assert state_dict[k].shape == pretrained_state_dict[k].shape


# TinyLlama-1.1B is to test MQA
@pytest.mark.parametrize(

    "model_name", ["meta-llama/Llama-2-7b-hf", "PY007/TinyLlama-1.1B-step-50K-105b"]

)
def test_inv_remap_state_dict_hf_llama(model_name):
    config = llama_config_to_gpt2_config(
        AutoConfig.from_pretrained(model_name, trust_remote_code=True)
    )
    state_dict = state_dict_from_pretrained(model_name)
    # inv_remap_state_dict_hf_llama should be the inverse of remap_state_dict_hf_llama
    state_dict = {key: val for key, val in state_dict.items() if "rotary_emb.inv_freq" not in key}
    pretrained_state_dict = remap_state_dict_hf_llama(state_dict, config)
    state_dict_recover = inv_remap_state_dict_hf_llama(pretrained_state_dict, config)
    assert set(state_dict_recover.keys()) == set(state_dict.keys())
    for key in state_dict_recover.keys():
        torch.testing.assert_close(state_dict_recover[key], state_dict[key])


# TinyLlama-1.1B is to test MQA
@pytest.mark.parametrize(

    "model_name",

    [

        "7B",  # Llama 1

        "13B",  # Llama 1

        "meta-llama/Llama-2-13b-hf",

        "codellama/CodeLlama-7b-hf",

        "codellama/CodeLlama-13b-hf",

        "codellama/CodeLlama-34b-hf",

        "PY007/TinyLlama-1.1B-step-50K-105b",

    ],

)
def test_llama_optimized(model_name):
    """Check that our implementation of LLaMa (with all optimizations enabled) matches the

    HF implementation: the output of our forward pass in fp16 should be around the same as the HF

    forward pass in fp16, when compared to the HF forward pass in fp32.

    """
    checkpoint_path = (
        Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
    )

    dtype = torch.float16
    device = "cuda"
    if "/" in model_name:  # Download from HF
        config = llama_config_to_gpt2_config(
            AutoConfig.from_pretrained(model_name, trust_remote_code=True)
        )
    else:
        config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta")
        config = llama_config_to_gpt2_config(config)
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

    if "/" in model_name:  # Download from HF
        pretrained_state_dict = remap_state_dict_hf_llama(
            state_dict_from_pretrained(model_name), config
        )
    else:
        pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
            checkpoint_path, model_name, config, checkpoint_format="meta"
        )
    model = GPTLMHeadModel(config, device=device, dtype=dtype)
    model.load_state_dict(pretrained_state_dict)
    model.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
    )
    with torch.no_grad():
        out = model.transformer(input_ids)
        logits = model(input_ids).logits
    del model

    # Without device_map, the model is loaded on the CPU, which is very slow
    # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
    model_ref = LlamaForCausalLM.from_pretrained(
        model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
        device_map="auto",
    )
    model_ref.eval()
    with torch.no_grad():
        out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
        logits_ref = model_ref(input_ids).logits.to(device=device)
    del model_ref

    model_hf = LlamaForCausalLM.from_pretrained(
        model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
        torch_dtype=dtype,
        device_map={"": device},
    )
    model_hf.eval()
    with torch.no_grad():
        out_hf = model_hf.model(input_ids).last_hidden_state
        logits_hf = model_hf(input_ids).logits
    del model_hf

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
    print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
    assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()

    print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
    print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
    print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
    print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
    assert (logits - logits_ref).abs().max().item() < 3 * (
        logits_hf - logits_ref
    ).abs().max().item()


# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "parallel"
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize(

    "model_name", ["13B", "meta-llama/Llama-2-13b-hf", "codellama/CodeLlama-34b-hf"]

)
def test_llama_parallel(model_name, world_size):
    """Check that our implementation of LLaMa (with all optimizations enabled) matches the

    HF implementation: the output of our forward pass in fp16 should be around the same as the HF

    forward pass in fp16, when compared to the HF forward pass in fp32.

    """
    from apex.transformer import parallel_state

    checkpoint_path = (
        Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
    )

    dtype = torch.float16
    if "/" in model_name:  # Download from HF
        config = llama_config_to_gpt2_config(
            AutoConfig.from_pretrained(model_name, trust_remote_code=True)
        )
    else:
        config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta")
        config = llama_config_to_gpt2_config(config)
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
    device = f"cuda:{torch.distributed.get_rank()}"
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    process_group = parallel_state.get_tensor_model_parallel_group()

    if "/" in model_name:  # Download from HF
        pretrained_state_dict = remap_state_dict_hf_llama(
            state_dict_from_pretrained(model_name), config
        )
    else:
        pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
            checkpoint_path, model_name, config, checkpoint_format="meta"
        )
    model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
    model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
    model.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
    )
    with torch.no_grad():
        out = model.transformer(input_ids)
        out, _ = all_gather_raw(out, process_group=process_group)
        out = rearrange(out, "(b s) d -> b s d", b=batch_size)
        logits = model(input_ids).logits
        logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
        logits, _ = all_gather_raw(logits, process_group)
        logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)
    del model

    if rank == 0:
        # Without device_map, the model is loaded on the CPU, which is very slow
        model_ref = LlamaForCausalLM.from_pretrained(
            model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
            device_map="auto",
        )
        model_ref.eval()
        with torch.no_grad():
            out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
            logits_ref = model_ref(input_ids).logits.to(device=device)
        del model_ref

        model_hf = LlamaForCausalLM.from_pretrained(
            model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
            torch_dtype=dtype,
            device_map="auto",
        )
        model_hf.eval()
        with torch.no_grad():
            out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
            logits_hf = model_hf(input_ids).logits.to(device=device)
        del model_hf

        print(f"Output max diff: {(out - out_ref).abs().max().item()}")
        print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
        print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
        print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
        assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()

        print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
        print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
        print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
        print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
        assert (logits - logits_ref).abs().max().item() < 2 * (
            logits_hf - logits_ref
        ).abs().max().item()


# @pytest.mark.parametrize('model_name', ["7B", "13B"])
@pytest.mark.parametrize("model_name", ["7B"])
@pytest.mark.parametrize("checkpoint_format", ["meta", "hf"])
def test_llama_generation(model_name, checkpoint_format):
    checkpoint_path = (
        Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
    )

    dtype = torch.float16
    device = "cuda"
    config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format)
    config = llama_config_to_gpt2_config(config)
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

    tokenizer = LlamaTokenizer.from_pretrained(Path(checkpoint_path) / f"{model_name}-hf")
    eos_token_id = tokenizer.eos_token_id

    torch.manual_seed(0)
    batch_size = 1
    seqlen = 100
    max_length = 150
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
    )

    model_hf = LlamaForCausalLM.from_pretrained(
        Path(checkpoint_path) / f"{model_name}-hf", torch_dtype=dtype, device_map={"": device}
    )
    model_hf.eval()
    print("HF fp16")
    torch.cuda.synchronize()
    start = time.time()
    out_hf = model_hf.generate(
        input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True
    )
    torch.cuda.synchronize()
    print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
    del model_hf

    # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
    model_ref = LlamaForCausalLM.from_pretrained(
        Path(checkpoint_path) / f"{model_name}-hf", device_map="auto"
    )
    model_ref.eval()
    with torch.no_grad():
        logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1].to(device=device)
    del model_ref

    pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
        checkpoint_path, model_name, config, checkpoint_format
    )
    model = GPTLMHeadModel(config, device=device, dtype=dtype)
    model.load_state_dict(pretrained_state_dict)
    model.eval()

    print("Without CUDA graph")
    torch.cuda.synchronize()
    start = time.time()
    out = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        eos_token_id=eos_token_id,
        return_dict_in_generate=True,
        output_scores=True,
        enable_timing=True,
        teacher_outputs=out_hf.sequences,
    )
    torch.cuda.synchronize()
    print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")

    # Capture graph outside the timing loop
    batch_size, seqlen_og = input_ids.shape
    model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
    print("With CUDA graph")
    torch.cuda.synchronize()
    start = time.time()
    out_cg = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        cg=True,
        return_dict_in_generate=True,
        output_scores=True,
        enable_timing=True,
        teacher_outputs=out_hf.sequences,
    )
    torch.cuda.synchronize()
    print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")

    with torch.no_grad():
        logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1]
    logits_hf = torch.stack(out_hf.scores, dim=1)
    logits = torch.stack(out.scores, dim=1)
    logits_cg = torch.stack(out_cg.scores, dim=1)

    del model

    hf_error = (logits_hf - logits_ref).abs().max().item()

    print(f"HF fp16 logits max diff: {hf_error}")
    print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
    print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item()}")

    assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
    assert (logits - logits_ref).abs().max().item() < 2 * hf_error
    assert torch.equal(logits_cg, logits)


# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "llama_parallel_generation"
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize(

    "model_name", ["13B", "meta-llama/Llama-2-13b-hf", "codellama/CodeLlama-34b-hf"]

)
def test_llama_parallel_generation(model_name, world_size):
    """Check that our implementation matches the HF implementation:

    the scores in fp16 should be around the same as the HF scores in fp16, when compared to

    the HF scores in fp32.

    """
    from apex.transformer import parallel_state

    checkpoint_path = (
        Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
    )

    dtype = torch.float16
    if "/" in model_name:  # Download from HF
        config = llama_config_to_gpt2_config(
            AutoConfig.from_pretrained(model_name, trust_remote_code=True)
        )
    else:
        config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta")
        config = llama_config_to_gpt2_config(config)
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True
    config.pad_vocab_size_multiple = 8 * world_size
    config.sequence_parallel = False  # Need to set this to False for generation

    os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
    device = f"cuda:{torch.distributed.get_rank()}"
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    process_group = parallel_state.get_tensor_model_parallel_group()

    torch.manual_seed(0)
    batch_size = 1
    seqlen = 100
    max_length = 150
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
    )

    # Need this, otherwise when we capture the graph the process for GPU 1 would run on both
    # GPU0 and GPU1 and things would hang
    torch.cuda.set_device(device)

    if "/" in model_name:  # Download from HF
        pretrained_state_dict = remap_state_dict_hf_llama(
            state_dict_from_pretrained(model_name), config
        )
    else:
        pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
            checkpoint_path, model_name, config, checkpoint_format="meta"
        )
    model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
    model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
    model.eval()

    print("Without CUDA graph")
    out = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        tensor_parallel=world_size,
        vocab_size=config.vocab_size,
        # teacher_outputs=out_hf.sequences,
        return_dict_in_generate=True,
        output_scores=True,
        enable_timing=True,
    )

    # Capture graph outside the timing loop
    batch_size, seqlen_og = input_ids.shape
    model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
    print("With CUDA graph")
    out_cg = model.generate(
        input_ids=input_ids,
        max_length=max_length,
        tensor_parallel=world_size,
        vocab_size=config.vocab_size,
        cg=True,
        # teacher_outputs=out_hf.sequences,
        return_dict_in_generate=True,
        output_scores=True,
        enable_timing=True,
    )
    del model
    parallel_state.destroy_model_parallel()

    if rank == 0:
        # Without device_map, the model is loaded on the CPU, which is very slow
        model_hf = LlamaForCausalLM.from_pretrained(
            model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
            torch_dtype=dtype,
            device_map="auto",
        )
        model_hf.eval()
        print("HF fp16")
        torch.cuda.synchronize()
        start = time.time()
        with torch.inference_mode():
            out_hf = model_hf.generate(
                input_ids=input_ids,
                max_length=max_length,
                return_dict_in_generate=True,
                output_scores=True,
            )
        torch.cuda.synchronize()
        print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
        del model_hf

        model_ref = LlamaForCausalLM.from_pretrained(
            model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf",
            device_map="auto",
        )
        model_ref.eval()
        with torch.inference_mode():
            logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1]
        del model_ref
        logits_hf = torch.stack(out_hf.scores, dim=1)

        logits = torch.stack(out.scores, dim=1)
        logits_cg = torch.stack(out_cg.scores, dim=1)

        hf_error = (logits_hf - logits_ref).abs().max().item()
        print(f"HF fp16 logits max diff: {hf_error}")
        print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
        assert (logits - logits_ref).abs().max().item() < 2 * hf_error
        print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item()}")
        assert torch.equal(logits_cg, logits)


@torch.no_grad()
@pytest.mark.parametrize("world_size", [2])
def test_llama_parallel_uneven_num_heads(world_size):
    from apex.transformer import parallel_state

    checkpoint_path = (
        Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama"
    )
    num_attention_heads = world_size + 1
    model_name = f"teeny-{num_attention_heads}-heads"

    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
    device = f"cuda:{torch.distributed.get_rank()}"
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    process_group = parallel_state.get_tensor_model_parallel_group()

    dtype = torch.float16
    llama_config = LlamaConfig(
        hidden_size=256
        * num_attention_heads,  # ParallelGatedMlp hidden_features must be divisible by 256
        intermediate_size=256 * num_attention_heads * 4,
        num_hidden_layers=4,
        num_attention_heads=num_attention_heads,
        initializer_range=0.5,  # Set crazy init range so we don't have near zero weights implying a vacuous test.
    )
    config = llama_config_to_gpt2_config(llama_config)
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
    )

    # Create a shared test model.
    if rank == 0:
        LlamaForCausalLM(config=llama_config).save_pretrained(checkpoint_path / f"{model_name}-hf")
    torch.distributed.barrier()

    # Run the standard forward pass test.
    pretrained_state_dict = _pretrained_state_dict_from_checkpoint(
        checkpoint_path, model_name, config, checkpoint_format="hf"
    )
    model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
    model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
    model.eval()

    # TODO: Avoid duplicate code. Modularize the comparison of two forward pass diffs.
    out = model.transformer(input_ids)
    out, _ = all_gather_raw(out, process_group=process_group)
    out = rearrange(out, "(b s) d -> b s d", b=batch_size)
    logits = model(input_ids).logits
    logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
    logits, _ = all_gather_raw(logits, process_group)
    logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)

    if rank == 0:
        model_ref = LlamaForCausalLM.from_pretrained(
            Path(checkpoint_path) / f"{model_name}-hf", device_map={"": device}
        )
        model_ref = model_ref.to(device=device)
        model_ref.eval()
        out_ref = model_ref.model(input_ids).last_hidden_state
        logits_ref = model_ref(input_ids).logits
        del model_ref

        model_hf = LlamaForCausalLM.from_pretrained(
            Path(checkpoint_path) / f"{model_name}-hf", torch_dtype=dtype, device_map={"": device}
        )
        model_hf.eval()
        out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
        logits_hf = model_hf(input_ids).logits.to(device=device)
        del model_hf

        print(f"Output max diff: {(out - out_ref).abs().max().item()}")
        print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
        print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
        print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
        assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()

        print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
        print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
        print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
        print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
        assert (logits - logits_ref).abs().max().item() < 2 * (
            logits_hf - logits_ref
        ).abs().max().item()

        if os.path.exists(checkpoint_path / f"{model_name}-hf"):
            shutil.rmtree(checkpoint_path / f"{model_name}-hf")