File size: 10,355 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_block_parallel.py

import math
from functools import partial

import pytest
import torch
import torch.nn as nn
import torch.nn.functional as F
from apex.transformer import parallel_state, tensor_parallel
from einops import rearrange
from flash_attn.modules.block import Block
from flash_attn.modules.mha import MHA, ParallelMHA
from flash_attn.modules.mlp import FusedMLP, ParallelFusedMLP
from flash_attn.utils.distributed import allreduce_sequence_parallel_grad

is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8


@pytest.mark.parametrize("dtype", [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize("world_size", [1, 2, 4, 8])
# @pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize("sequence_parallel", [True, False])
# @pytest.mark.parametrize('sequence_parallel', [True])
@pytest.mark.parametrize("dim", [1024])
def test_block_parallel(dim, sequence_parallel, world_size, dtype):
    head_dim = 64
    assert dim % head_dim == 0
    num_heads = dim // head_dim
    assert num_heads % world_size == 0
    rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
    device = f"cuda:{torch.distributed.get_rank()}"
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    seqlen = 1024
    assert (batch_size * seqlen) % world_size == 0
    x_pt = torch.randn(batch_size * seqlen, dim, device=device, dtype=dtype, requires_grad=True)
    residual_pt = torch.randn(batch_size * seqlen, dim, device=device, requires_grad=True)
    # We need to generate g here so that all processes get the same gradient,
    # as rank 0 will have an extra bias that changes the RNG.
    # If we don't divide by batch_size, the gradient gets a bit too large.
    g = torch.randn_like(x_pt) / 32
    if sequence_parallel:
        x = (
            tensor_parallel.scatter_to_sequence_parallel_region(x_pt)
            .detach()
            .clone()
            .requires_grad_()
        )
        residual = (
            tensor_parallel.scatter_to_sequence_parallel_region(residual_pt)
            .detach()
            .clone()
            .requires_grad_()
        )
    else:
        x = x_pt.detach().clone().requires_grad_()
        residual = residual_pt.detach().clone().requires_grad_()

    mixer_cls_pt = partial(
        MHA,
        num_heads=num_heads,
        rotary_emb_dim=int(head_dim // 2),
        use_flash_attn=True,
        device=device,
        dtype=dtype,
    )
    mlp_cls_pt = partial(FusedMLP, hidden_features=4 * dim, device=device, dtype=dtype)
    norm_cls = partial(nn.LayerNorm, device=device, dtype=dtype)
    model_pt = Block(dim, mixer_cls_pt, mlp_cls_pt, norm_cls, fused_dropout_add_ln=True)
    with torch.no_grad():
        nn.init.normal_(model_pt.norm1.weight)
        nn.init.normal_(model_pt.norm1.bias)
        nn.init.normal_(model_pt.norm2.weight)
        nn.init.normal_(model_pt.norm2.bias)

    mixer_cls = partial(
        ParallelMHA,
        num_heads=num_heads,
        process_group=parallel_state.get_tensor_model_parallel_group(),
        rotary_emb_dim=int(head_dim // 2),
        use_flash_attn=True,
        sequence_parallel=sequence_parallel,
        device=device,
        dtype=dtype,
    )
    mlp_cls = partial(
        ParallelFusedMLP,
        hidden_features=4 * dim,
        process_group=parallel_state.get_tensor_model_parallel_group(),
        sequence_parallel=sequence_parallel,
        device=device,
        dtype=dtype,
    )
    model = Block(
        dim,
        mixer_cls,
        mlp_cls,
        norm_cls,
        fused_dropout_add_ln=True,
        sequence_parallel=sequence_parallel,
        mark_shared_params=True,
    )

    partition_dim = dim // world_size
    partition_hidden_dim = 4 * dim // world_size
    with torch.no_grad():
        model.mixer.Wqkv.weight.copy_(
            rearrange(
                rearrange(model_pt.mixer.Wqkv.weight, "(three o) i -> three o i", three=3)[
                    :, rank * partition_dim : (rank + 1) * partition_dim
                ],
                "three o i -> (three o) i",
            )
        )
        model.mixer.Wqkv.bias.copy_(
            rearrange(
                rearrange(model_pt.mixer.Wqkv.bias, "(three o) -> three o", three=3)[
                    :, rank * partition_dim : (rank + 1) * partition_dim
                ],
                "three o -> (three o)",
            )
        )
        model.mixer.out_proj.weight.copy_(
            model_pt.mixer.out_proj.weight[:, rank * partition_dim : (rank + 1) * partition_dim]
        )
        if rank == 0:
            model.mixer.out_proj.bias.copy_(model_pt.mixer.out_proj.bias)
        model.mlp.fc1.weight.copy_(
            model_pt.mlp.fc1.weight[rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim]
        )
        model.mlp.fc1.bias.copy_(
            model_pt.mlp.fc1.bias[rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim]
        )
        model.mlp.fc2.weight.copy_(
            model_pt.mlp.fc2.weight[
                :, rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim
            ]
        )
        if rank == 0:
            model.mlp.fc2.bias.copy_(model_pt.mlp.fc2.bias)
        model.norm1.weight.copy_(model_pt.norm1.weight)
        model.norm1.bias.copy_(model_pt.norm1.bias)
        model.norm2.weight.copy_(model_pt.norm2.weight)
        model.norm2.bias.copy_(model_pt.norm2.bias)

    mixer_kwargs = {"seqlen": seqlen}
    out, out_residual = model(x, residual, mixer_kwargs=mixer_kwargs)
    out_pt, out_residual_pt = model_pt(
        rearrange(x_pt, "(b s) d -> b s d", s=seqlen),
        rearrange(residual_pt, "(b s) d -> b s d", s=seqlen),
    )
    out_pt, out_residual_pt = [rearrange(x, "b s d -> (b s) d") for x in [out_pt, out_residual_pt]]
    partition_batch_dim = batch_size * seqlen // world_size
    assert torch.allclose(
        out,
        out_pt[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
        if sequence_parallel
        else out_pt,
        rtol=rtol,
        atol=atol,
    )
    assert torch.allclose(
        out_residual,
        out_residual_pt[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
        if sequence_parallel
        else out_residual_pt,
        rtol=rtol,
        atol=atol,
    )

    (out_pt + 2 * out_residual_pt).backward(g)
    (out + 2 * out_residual).backward(
        g[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] if sequence_parallel else g
    )
    allreduce_sequence_parallel_grad(model, parallel_state.get_tensor_model_parallel_group())
    parallel_state.destroy_model_parallel()

    assert torch.allclose(
        x.grad,
        x_pt.grad[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
        if sequence_parallel
        else x_pt.grad,
        rtol=rtol,
        atol=atol / 10,  # magnitude of x.grad is quite small
    )
    assert torch.allclose(
        residual.grad,
        residual_pt.grad[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
        if sequence_parallel
        else residual_pt.grad,
        rtol=rtol,
        atol=atol,
    )
    # The error for d_weight and d_bias is quite a bit higher
    assert torch.allclose(
        model.mixer.Wqkv.weight.grad,
        rearrange(
            rearrange(model_pt.mixer.Wqkv.weight.grad, "(three o) i -> three o i", three=3)[
                :, rank * partition_dim : (rank + 1) * partition_dim
            ],
            "three o i -> (three o) i",
        ),
        rtol=rtol,
        atol=atol * 10,
    )
    assert torch.allclose(
        model.mixer.Wqkv.bias.grad,
        rearrange(
            rearrange(model_pt.mixer.Wqkv.bias.grad, "(three o) -> three o", three=3)[
                :, rank * partition_dim : (rank + 1) * partition_dim
            ],
            "three o -> (three o)",
        ),
        rtol=rtol,
        atol=atol * 5,
    )
    assert torch.allclose(
        model.mixer.out_proj.weight.grad,
        model_pt.mixer.out_proj.weight.grad[:, rank * partition_dim : (rank + 1) * partition_dim],
        rtol=rtol,
        atol=atol * 10,
    )
    if rank == 0:
        assert torch.allclose(
            model.mixer.out_proj.bias.grad,
            model_pt.mixer.out_proj.bias.grad,
            rtol=rtol,
            atol=atol * 5,
        )
    assert torch.allclose(
        model.mlp.fc1.weight.grad,
        model_pt.mlp.fc1.weight.grad[
            rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim
        ],
        rtol=rtol,
        atol=atol * 10,
    )
    assert torch.allclose(
        model.mlp.fc1.bias.grad,
        model_pt.mlp.fc1.bias.grad[rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim],
        rtol=rtol,
        atol=atol * 5,
    )
    assert torch.allclose(
        model.mlp.fc2.weight.grad,
        model_pt.mlp.fc2.weight.grad[
            :, rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim
        ],
        rtol=rtol,
        atol=atol * 10,
    )
    if rank == 0:
        assert torch.allclose(
            model.mlp.fc2.bias.grad, model_pt.mlp.fc2.bias.grad, rtol=rtol, atol=atol * 5
        )

    assert torch.allclose(
        model.norm1.weight.grad, model_pt.norm1.weight.grad, rtol=rtol, atol=atol * 5
    )
    assert torch.allclose(model.norm1.bias.grad, model_pt.norm1.bias.grad, rtol=rtol, atol=atol * 5)
    assert torch.allclose(
        model.norm2.weight.grad, model_pt.norm2.weight.grad, rtol=rtol, atol=atol * 5
    )
    assert torch.allclose(model.norm2.bias.grad, model_pt.norm2.bias.grad, rtol=rtol, atol=atol * 5)