File size: 6,476 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import math
from functools import partial

import pytest
import torch
import torch.nn.functional as F
from einops import rearrange
from flash_attn.ops.fused_dense import FusedDense, FusedMLP


@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("return_residual", [False, True])
@pytest.mark.parametrize("has_bias", [True, False])
@pytest.mark.parametrize("out_features", [1024, 4096])
@pytest.mark.parametrize("in_features", [1024, 4096])
def test_fused_linear_bias(in_features, out_features, has_bias, return_residual, dtype):
    device = "cuda"
    rtol, atol = (3e-3, 1e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3)
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 512
    x_pt = torch.randn(
        batch_size, seqlen, in_features, device=device, dtype=dtype, requires_grad=True
    )
    x = x_pt.detach().clone().requires_grad_()
    model_pt = torch.nn.Linear(in_features, out_features, bias=has_bias, device=device, dtype=dtype)
    model = FusedDense(
        in_features,
        out_features,
        bias=has_bias,
        return_residual=return_residual,
        device=device,
        dtype=dtype,
    )
    with torch.no_grad():
        model.weight.copy_(model_pt.weight)
        if has_bias:
            model.bias.copy_(model_pt.bias)
    out_pt = model_pt(x_pt)
    if not return_residual:
        out = model(x)
    else:
        out, x_copy = model(x)
        x_copy = (
            x_copy[..., :out_features]
            if out_features < in_features
            else F.pad(x_copy, (0, out_features - in_features))
        )
        x_pt_copy = (
            x_pt[..., :out_features]
            if out_features < in_features
            else F.pad(x_pt, (0, out_features - in_features))
        )
        # Just add some random function of the residual
        out_pt = out_pt + F.gelu(x_pt_copy)
        out = out + F.gelu(x_copy)

    # with torch.no_grad():
    #     out_fl = F.linear(x_pt.float(), model.weight.float(), model.bias.float()).half()
    assert torch.allclose(out, out_pt, rtol=rtol, atol=atol)

    # If we don't divide by batch_size, the gradient gets a bit too large.
    g = torch.randn_like(out) / 32
    out_pt.backward(g)
    out.backward(g)
    assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)
    # The error for d_weight and d_bias is quite a bit higher
    assert torch.allclose(model.weight.grad, model_pt.weight.grad, rtol=rtol, atol=atol * 10)
    if has_bias:
        assert torch.allclose(model.bias.grad, model_pt.bias.grad, rtol=rtol, atol=atol * 5)


@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize("heuristic", ["auto", -1])
# @pytest.mark.parametrize('heuristic', ['auto'])
@pytest.mark.parametrize("checkpoint_lvl", [0, 1, 2])
# @pytest.mark.parametrize('checkpoint_lvl', [1])
@pytest.mark.parametrize("return_residual", [False, True])
# @pytest.mark.parametrize('return_residual', [False])
@pytest.mark.parametrize("has_bias2", [True, False])
@pytest.mark.parametrize("has_bias1", [True, False])
# @pytest.mark.parametrize('has_bias2', [True])
# @pytest.mark.parametrize('has_bias1', [True])
@pytest.mark.parametrize("activation", ["gelu_approx", "relu"])
# @pytest.mark.parametrize('activation', ['relu'])
@pytest.mark.parametrize("out_features", [1024, 4096])
@pytest.mark.parametrize("in_features", [1024, 4096])
# @pytest.mark.parametrize('out_features', [4096])
# @pytest.mark.parametrize('in_features', [1024])
def test_fused_mlp(

    in_features,

    out_features,

    activation,

    has_bias1,

    has_bias2,

    return_residual,

    checkpoint_lvl,

    heuristic,

    dtype,

):
    device = "cuda"
    rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3)
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 512
    x_pt = torch.randn(
        batch_size, seqlen, in_features, device=device, dtype=dtype, requires_grad=True
    )
    x = x_pt.detach().clone().requires_grad_()
    model_pt_fc1 = torch.nn.Linear(
        in_features, out_features, bias=has_bias1, device=device, dtype=dtype
    )
    model_pt_fc2 = torch.nn.Linear(
        out_features, in_features, bias=has_bias2, device=device, dtype=dtype
    )
    model = FusedMLP(
        in_features,
        out_features,
        in_features,
        activation=activation,
        bias1=has_bias1,
        bias2=has_bias2,
        return_residual=return_residual,
        checkpoint_lvl=checkpoint_lvl,
        heuristic=heuristic,
        device=device,
        dtype=dtype,
    )
    with torch.no_grad():
        model.fc1.weight.copy_(model_pt_fc1.weight)
        if has_bias1:
            model.fc1.bias.copy_(model_pt_fc1.bias)
        model.fc2.weight.copy_(model_pt_fc2.weight)
        if has_bias2:
            model.fc2.bias.copy_(model_pt_fc2.bias)
    activation_fn = (
        partial(F.gelu, approximate="tanh")
        if activation == "gelu_approx"
        else partial(F.relu, inplace=True)
    )
    out_pt = model_pt_fc2(activation_fn(model_pt_fc1(x_pt)))
    if not return_residual:
        out = model(x)
    else:
        out, x_copy = model(x)
        # Just add some random function of the residual
        out_pt = out_pt + F.gelu(x_pt)
        out = out + F.gelu(x_copy)
    assert torch.allclose(out, out_pt, rtol=rtol, atol=atol)

    # If we don't divide by batch_size, the gradient gets a bit too large.
    g = torch.randn_like(out) / 32
    out_pt.backward(g)
    out.backward(g)
    # The error for relu is higher still
    if activation == "relu":
        atol = 1e-1 if dtype == torch.bfloat16 else 5e-2
    assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)
    # The error for d_weight and d_bias is quite a bit higher
    assert torch.allclose(
        model.fc1.weight.grad, model_pt_fc1.weight.grad, rtol=rtol, atol=atol * 10
    )
    if has_bias1:
        assert torch.allclose(model.fc1.bias.grad, model_pt_fc1.bias.grad, rtol=rtol, atol=atol * 5)
    assert torch.allclose(
        model.fc2.weight.grad, model_pt_fc2.weight.grad, rtol=rtol, atol=atol * 10
    )
    if has_bias2:
        assert torch.allclose(model.fc2.bias.grad, model_pt_fc2.bias.grad, rtol=rtol, atol=atol * 5)