File size: 9,092 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/ops/test_fused_dense_parallel.py

import math

import pytest
import torch
import torch.nn.functional as F
from apex.transformer import parallel_state, tensor_parallel
from flash_attn.ops.fused_dense import ColumnParallelLinear, FusedDense, FusedMLP, ParallelFusedMLP

is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8


@pytest.mark.parametrize("dtype", [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@pytest.mark.parametrize("world_size", [1, 2, 4, 8])
# @pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize("sequence_parallel", [True, False])
# @pytest.mark.parametrize('sequence_parallel', [False])
@pytest.mark.parametrize("has_bias", [True, False])
# @pytest.mark.parametrize('has_bias', [False])
@pytest.mark.parametrize("out_features", [1024])
@pytest.mark.parametrize("in_features", [4096])
def test_fused_linear_bias(

    in_features, out_features, has_bias, sequence_parallel, world_size, dtype

):
    assert out_features % world_size == 0
    rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
    device = f"cuda:{torch.distributed.get_rank()}"
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    seqlen = 512
    assert batch_size * seqlen % world_size == 0
    x_pt = torch.randn(
        batch_size * seqlen, in_features, device=device, dtype=dtype, requires_grad=True
    )
    if sequence_parallel:
        x = (
            tensor_parallel.scatter_to_sequence_parallel_region(x_pt)
            .detach()
            .clone()
            .requires_grad_()
        )
    else:
        x = x_pt.detach().clone().requires_grad_()

    model_pt = torch.nn.Linear(in_features, out_features, bias=has_bias, device=device, dtype=dtype)
    partition_out_features = out_features // world_size
    model = ColumnParallelLinear(
        in_features,
        out_features,
        parallel_state.get_tensor_model_parallel_group(),
        bias=has_bias,
        sequence_parallel=sequence_parallel,
        device=device,
        dtype=dtype,
    )
    with torch.no_grad():
        model.weight.copy_(
            model_pt.weight[rank * partition_out_features : (rank + 1) * partition_out_features]
        )
        if has_bias:
            model.bias.copy_(
                model_pt.bias[rank * partition_out_features : (rank + 1) * partition_out_features]
            )

    out = model(x)
    out_pt = model_pt(x_pt)
    assert torch.allclose(
        out,
        out_pt[:, rank * partition_out_features : (rank + 1) * partition_out_features],
        rtol=rtol,
        atol=atol,
    )

    # If we don't divide by batch_size, the gradient gets a bit too large.
    g = torch.randn_like(out_pt) / 32
    out_pt.backward(g)
    out.backward(g[:, rank * partition_out_features : (rank + 1) * partition_out_features])
    parallel_state.destroy_model_parallel()

    partition_batch_dim = batch_size * seqlen // world_size
    assert torch.allclose(
        x.grad,
        x_pt.grad[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
        if sequence_parallel
        else x_pt.grad,
        rtol=rtol,
        atol=atol,
    )
    # The error for d_weight and d_bias is quite a bit higher
    assert torch.allclose(
        model.weight.grad,
        model_pt.weight.grad[rank * partition_out_features : (rank + 1) * partition_out_features],
        rtol=rtol,
        atol=atol * 10,
    )
    if has_bias:
        assert torch.allclose(
            model.bias.grad,
            model_pt.bias.grad[rank * partition_out_features : (rank + 1) * partition_out_features],
            rtol=rtol,
            atol=atol * 5,
        )


@pytest.mark.parametrize("dtype", [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@pytest.mark.parametrize("world_size", [1, 2, 4, 8])
# @pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize("sequence_parallel", [True, False])
# @pytest.mark.parametrize('sequence_parallel', [False])
@pytest.mark.parametrize("has_bias2", [True, False])
# @pytest.mark.parametrize('has_bias2', [True])
@pytest.mark.parametrize("out_features", [4096])
@pytest.mark.parametrize("in_features", [1024])
def test_fused_mlp(in_features, out_features, has_bias2, sequence_parallel, world_size, dtype):
    assert out_features % world_size == 0
    rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
    device = f"cuda:{torch.distributed.get_rank()}"
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    seqlen = 512
    assert batch_size * seqlen % world_size == 0
    x_pt = torch.randn(
        batch_size * seqlen, in_features, device=device, dtype=dtype, requires_grad=True
    )
    # We need to generate g here so that all processes get the same gradient,
    # as rank 0 will have an extra bias that changes the RNG.
    # If we don't divide by batch_size, the gradient gets a bit too large.
    g = torch.randn_like(x_pt) / 32
    if sequence_parallel:
        x = (
            tensor_parallel.scatter_to_sequence_parallel_region(x_pt)
            .detach()
            .clone()
            .requires_grad_()
        )
    else:
        x = x_pt.detach().clone().requires_grad_()

    model_pt_fc1 = torch.nn.Linear(in_features, out_features, device=device, dtype=dtype)
    model_pt_fc2 = torch.nn.Linear(
        out_features, in_features, bias=has_bias2, device=device, dtype=dtype
    )
    partition_out_features = out_features // world_size
    partition_in_features = in_features // world_size
    model = ParallelFusedMLP(
        in_features,
        out_features,
        in_features,
        process_group=parallel_state.get_tensor_model_parallel_group(),
        bias2=has_bias2 and rank == 0,
        sequence_parallel=sequence_parallel,
        device=device,
        dtype=dtype,
    )

    with torch.no_grad():
        model.fc1.weight.copy_(
            model_pt_fc1.weight[rank * partition_out_features : (rank + 1) * partition_out_features]
        )
        model.fc1.bias.copy_(
            model_pt_fc1.bias[rank * partition_out_features : (rank + 1) * partition_out_features]
        )
        model.fc2.weight.copy_(
            model_pt_fc2.weight[
                :, rank * partition_out_features : (rank + 1) * partition_out_features
            ]
        )
        if has_bias2 and rank == 0:
            model.fc2.bias.copy_(model_pt_fc2.bias)

    out = model(x)
    out_pt = model_pt_fc2(F.gelu(model_pt_fc1(x_pt), approximate="tanh"))
    partition_batch_dim = batch_size * seqlen // world_size
    assert torch.allclose(
        out,
        out_pt[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
        if sequence_parallel
        else out_pt,
        rtol=rtol,
        atol=atol,
    )

    out_pt.backward(g)
    out.backward(
        g[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] if sequence_parallel else g
    )
    parallel_state.destroy_model_parallel()

    assert torch.allclose(
        x.grad,
        x_pt.grad[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
        if sequence_parallel
        else x_pt.grad,
        rtol=rtol,
        atol=atol,
    )
    # The error for d_weight and d_bias is quite a bit higher
    assert torch.allclose(
        model.fc1.weight.grad,
        model_pt_fc1.weight.grad[
            rank * partition_out_features : (rank + 1) * partition_out_features
        ],
        rtol=rtol,
        atol=atol * 10,
    )
    assert torch.allclose(
        model.fc1.bias.grad,
        model_pt_fc1.bias.grad[rank * partition_out_features : (rank + 1) * partition_out_features],
        rtol=rtol,
        atol=atol * 5,
    )
    assert torch.allclose(
        model.fc2.weight.grad,
        model_pt_fc2.weight.grad[
            :, rank * partition_out_features : (rank + 1) * partition_out_features
        ],
        rtol=rtol,
        atol=atol * 10,
    )
    if has_bias2 and rank == 0:
        assert torch.allclose(model.fc2.bias.grad, model_pt_fc2.bias.grad, rtol=rtol, atol=atol * 5)