File size: 14,395 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Copyright (c) 2024, Tri Dao.

import pytest
import torch
import torch.nn.functional as F
from einops import rearrange, repeat

from flash_attn.ops.triton.layer_norm import (
    layer_norm_fn,
    layer_norm_ref,
    rms_norm_ref,
    layer_norm_linear_fn,
)


is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8


@pytest.mark.parametrize("has_weight1", [False, True])
# @pytest.mark.parametrize("has_weight1", [True])
@pytest.mark.parametrize("has_x1", [False, True])
# @pytest.mark.parametrize("has_x1", [False])
@pytest.mark.parametrize("has_rowscale", [False, True])
# @pytest.mark.parametrize("has_rowscale", [False])
@pytest.mark.parametrize("dropout_p", [0.0, 0.27])
# @pytest.mark.parametrize("dropout_p", [0.0])
@pytest.mark.parametrize("prenorm", [True, False])
# @pytest.mark.parametrize("prenorm", [False])
@pytest.mark.parametrize("is_rms_norm", [False, True])
# @pytest.mark.parametrize("is_rms_norm", [True])
@pytest.mark.parametrize("has_residual", [True, False])
# @pytest.mark.parametrize("has_residual", [False])
@pytest.mark.parametrize(

    "weight_dtype", [torch.float32, torch.float16] + ([torch.bfloat16] if is_sm8x else [])

)
# @pytest.mark.parametrize("weight_dtype", [torch.float32])
@pytest.mark.parametrize(

    "input_dtype,residual_dtype",

    [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]

    + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),

)
# @pytest.mark.parametrize("input_dtype,residual_dtype", [(torch.float16, torch.float16)])
@pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000, 4096])
# @pytest.mark.parametrize("hidden_size", [256])
def test_layer_norm(

    hidden_size,

    input_dtype,

    residual_dtype,

    weight_dtype,

    has_residual,

    is_rms_norm,

    prenorm,

    dropout_p,

    has_rowscale,

    has_x1,

    has_weight1,

):
    if has_rowscale and has_x1:
        pytest.skip("Not supported")
    device = "cuda"
    if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]):
        atol = 5e-2
    elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]):
        atol = 1e-2
    else:
        atol = 1e-4
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 512
    layer_norm_ref_fn = layer_norm_ref if not is_rms_norm else rms_norm_ref
    allclose = (
        # Sometimes x0_pt.grad is NaN
        lambda x, x_pt, x_ref, atol=atol: (x - x_ref).abs().max()
        <= 2 * (x_pt[~x_pt.isnan()] - x_ref[~x_pt.isnan()]).abs().max() + atol
        or (
            # Sometimes x_pt and x_ref are the same (e.g. bfloat16) so we want to perturb is a bit
            # by multiply and divide by 0.3
            (x_pt[~x_pt.isnan()] - x_ref[~x_pt.isnan()]).abs().max() == 0.0
            and (x - x_ref).abs().max()
            <= 2 * (x_pt[~x_pt.isnan()] * 0.3 / 0.3 - x_ref[~x_pt.isnan()]).abs().max() + atol
        )
    )
    x0 = torch.randn(
        batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
    )
    x0_pt = x0.detach().clone().requires_grad_()
    x0_ref = x0.detach().clone().requires_grad_()
    if has_residual:
        res = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
        res_pt = res.detach().clone().requires_grad_()
        res_ref = res.detach().clone().requires_grad_()
    else:
        res, res_pt, res_ref = None, None, None
    weight = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
    if not is_rms_norm:
        bias = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
    else:
        bias = None
    weight_pt = weight.detach().clone().requires_grad_()
    weight_ref = weight.detach().clone().requires_grad_()
    bias_pt = bias.detach().clone().requires_grad_() if bias is not None else None
    bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None
    if has_x1:
        x1 = torch.randn_like(x0, dtype=input_dtype, requires_grad=True)
        x1_pt = x1.detach().clone().requires_grad_()
        x1_ref = x1.detach().clone().requires_grad_()
    else:
        x1, x1_pt, x1_ref = None, None, None
    if has_weight1:
        weight1 = torch.randn(
            hidden_size, device=device, dtype=weight_dtype, requires_grad=True
        )
        weight1_pt = weight1.detach().clone().requires_grad_()
        weight1_ref = weight1.detach().clone().requires_grad_()
        if not is_rms_norm:
            bias1 = torch.randn(
                hidden_size, device=device, dtype=weight_dtype, requires_grad=True
            )
        else:
            bias1 = None
        bias1_pt = bias1.detach().clone().requires_grad_() if bias1 is not None else None
        bias1_ref = bias1.detach().clone().requires_grad_() if bias1 is not None else None
    else:
        weight1, weight1_pt, weight1_ref = None, None, None
        bias1, bias1_pt, bias1_ref = None, None, None

    rowscale = (
        torch.randn(batch_size, seqlen, dtype=input_dtype, device=device)
        if has_rowscale
        else None
    )

    residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
    out, *rest = layer_norm_fn(
        x0,
        weight,
        bias,
        residual=res,
        x1=x1,
        weight1=weight1,
        bias1=bias1,
        eps=1e-6,
        dropout_p=dropout_p,
        rowscale=rowscale,
        prenorm=prenorm,
        residual_in_fp32=residual_in_fp32,
        is_rms_norm=is_rms_norm,
        return_dropout_mask=True,
    )
    dropout_mask = rest[-2] if dropout_p > 0.0 else None
    dropout_mask1 = rest[-1] if dropout_p > 0.0 and x1 is not None else None
    out_pt = layer_norm_ref_fn(
        x0_pt,
        weight_pt,
        bias_pt,
        residual=res_pt,
        x1=x1_pt,
        weight1=weight1_pt,
        bias1=bias1_pt,
        eps=1e-6,
        dropout_p=dropout_p,
        rowscale=rowscale,
        prenorm=prenorm,
        dropout_mask=dropout_mask,
        dropout_mask1=dropout_mask1,
    )
    out_ref = layer_norm_ref_fn(
        x0_ref,
        weight_ref,
        bias_ref,
        residual=res_ref,
        x1=x1_ref,
        weight1=weight1_ref,
        bias1=bias1_ref,
        eps=1e-6,
        dropout_p=dropout_p,
        rowscale=rowscale,
        prenorm=prenorm,
        dropout_mask=dropout_mask,
        dropout_mask1=dropout_mask1,
        upcast=True,
    )
    if not has_weight1:
        if prenorm:
            residual = rest[0]
            out_pt, residual_pt = out_pt
            out_ref, residual_ref = out_ref
        out1, out1_pt, out1_ref = None, None, None
    else:
        out1 = rest.pop(0)
        if prenorm:
            residual = rest[0]
            out_pt, out1_pt, residual_pt = out_pt
            out_ref, out1_ref, residual_ref = out_ref
        else:
            out_pt, out1_pt = out_pt
            out_ref, out1_ref = out_ref
    assert out.dtype == input_dtype
    if prenorm:
        assert residual.dtype == residual_dtype
        assert allclose(residual, residual_pt, residual_ref)
    assert allclose(out, out_pt, out_ref)
    if out1 is not None:
        assert out1.dtype == input_dtype
        assert allclose(out1, out1_pt, out1_ref)
    if dropout_mask is not None:
        dropout_fraction = 1.0 - dropout_mask.float().mean()
        assert abs(dropout_fraction - dropout_p) < 0.01
    if dropout_mask1 is not None:
        dropout_fraction = 1.0 - dropout_mask1.float().mean()
        assert abs(dropout_fraction - dropout_p) < 0.01
        assert not torch.equal(dropout_mask, dropout_mask1)

    g = torch.randn_like(out) / batch_size
    if has_weight1:
        out = out * F.gelu(out1)
        out_pt = out_pt * F.gelu(out1_pt)
        out_ref = out_ref * F.gelu(out1_ref)
    if not prenorm:
        out.backward(g)
        out_pt.backward(g)
        out_ref.backward(g)
    else:
        (out * F.sigmoid(residual)).backward(g)
        (out_pt * F.sigmoid(residual_pt)).backward(g)
        (out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g)
    assert allclose(x0.grad, x0_pt.grad, x0_ref.grad)
    if has_residual:
        assert allclose(res.grad, res_pt.grad, res_ref.grad)
    if has_x1:
        assert allclose(x1.grad, x1_pt.grad, x1_ref.grad)
    assert allclose(weight.grad, weight_pt.grad, weight_ref.grad)
    if bias is not None:
        assert allclose(bias.grad, bias_pt.grad, bias_ref.grad)
    if has_weight1:
        assert allclose(weight1.grad, weight1_pt.grad, weight1_ref.grad)
        if bias1 is not None:
            assert allclose(bias1.grad, bias1_pt.grad, bias1_ref.grad)


@pytest.mark.parametrize("prenorm", [True, False])
# @pytest.mark.parametrize("prenorm", [True])
@pytest.mark.parametrize("is_rms_norm", [False, True])
# @pytest.mark.parametrize("is_rms_norm", [True])
@pytest.mark.parametrize("has_residual", [True, False])
# @pytest.mark.parametrize("has_residual", [False])
@pytest.mark.parametrize("weight_dtype", [torch.float32])
@pytest.mark.parametrize(

    "input_dtype,residual_dtype",

    [(torch.float16, torch.float16), (torch.float16, torch.float32)]

    + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),

)
# @pytest.mark.parametrize("input_dtype,residual_dtype", [(torch.bfloat16, torch.float32)])
@pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000])
# @pytest.mark.parametrize("hidden_size", [256])
def test_layer_norm_linear(

    hidden_size, input_dtype, residual_dtype, weight_dtype, has_residual, is_rms_norm, prenorm

):
    device = "cuda"
    if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]):
        atol = 5e-2
    elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]):
        atol = 1e-2
    else:
        atol = 1e-4
    # set seed
    torch.random.manual_seed(0)
    batch_size = 4
    seqlen = 512
    # batch_size = 1
    # seqlen = 1
    layer_norm_ref_fn = layer_norm_ref if not is_rms_norm else rms_norm_ref
    allclose = (
        lambda x, x_pt, x_ref, atol=atol: (x - x_ref).abs().max()
        <= 2 * (x_pt - x_ref).abs().max() + atol
    )
    x0 = torch.randn(
        batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
    )
    x0_pt = x0.detach().clone().requires_grad_()
    x0_ref = x0.detach().clone().requires_grad_()
    if has_residual:
        res = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
        res_pt = res.detach().clone().requires_grad_()
        res_ref = res.detach().clone().requires_grad_()
    else:
        res, res_pt, res_ref = None, None, None
    norm_weight = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
    if not is_rms_norm:
        norm_bias = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
    else:
        norm_bias = None
    norm_weight_pt = norm_weight.detach().clone().requires_grad_()
    norm_weight_ref = norm_weight.detach().clone().requires_grad_()
    norm_bias_pt = norm_bias.detach().clone().requires_grad_() if norm_bias is not None else None
    norm_bias_ref = norm_bias.detach().clone().requires_grad_() if norm_bias is not None else None
    linear_weight = torch.empty(
        2 * hidden_size, hidden_size, device=device, dtype=weight_dtype, requires_grad=True
    )
    torch.nn.init.xavier_uniform_(linear_weight)
    if not is_rms_norm:
        linear_bias = torch.randn(
            2 * hidden_size, device=device, dtype=weight_dtype, requires_grad=True
        )
    else:
        linear_bias = None
    linear_weight_pt = linear_weight.detach().clone().requires_grad_()
    linear_weight_ref = linear_weight.detach().clone().requires_grad_()
    linear_bias_pt = (
        linear_bias.detach().clone().requires_grad_() if linear_bias is not None else None
    )
    linear_bias_ref = (
        linear_bias.detach().clone().requires_grad_() if linear_bias is not None else None
    )

    residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
    with torch.autocast(device_type="cuda", dtype=input_dtype):
        out, *rest = layer_norm_linear_fn(
            x0,
            norm_weight,
            norm_bias,
            linear_weight,
            linear_bias,
            residual=res,
            eps=1e-6,
            prenorm=prenorm,
            residual_in_fp32=residual_in_fp32,
            is_rms_norm=is_rms_norm,
        )
    out_pt, *rest_pt = layer_norm_ref_fn(
        x0_pt, norm_weight_pt, norm_bias_pt, residual=res_pt, eps=1e-6, prenorm=prenorm
    )
    with torch.autocast(device_type="cuda", dtype=input_dtype):
        out_pt = F.linear(out_pt, linear_weight_pt, linear_bias_pt)
    out_ref, *rest_ref = layer_norm_ref_fn(
        x0_ref,
        norm_weight_ref,
        norm_bias_ref,
        residual=res_ref,
        eps=1e-6,
        prenorm=prenorm,
        upcast=True,
    )
    out_ref = F.linear(out_ref.to(linear_weight_ref.dtype), linear_weight_ref, linear_bias_ref)
    if prenorm:
        residual = rest[0]
        residual_pt = rest_pt[0]
        residual_ref = rest_ref[0]
    assert out.dtype == input_dtype
    if prenorm:
        assert residual.dtype == residual_dtype
        assert allclose(residual, residual_pt, residual_ref)
    assert allclose(out, out_pt, out_ref)

    g = torch.randn_like(out) / batch_size
    out.backward(g)
    out_pt.backward(g)
    out_ref.backward(g)
    assert allclose(x0.grad, x0_pt.grad, x0_ref.grad)
    if has_residual:
        assert allclose(res.grad, res_pt.grad, res_ref.grad)
    assert allclose(norm_weight.grad, norm_weight_pt.grad, norm_weight_ref.grad)
    if norm_bias is not None:
        assert allclose(norm_bias.grad, norm_bias_pt.grad, norm_bias_ref.grad)
    assert allclose(linear_weight.grad, linear_weight_pt.grad, linear_weight_ref.grad)
    if linear_bias is not None:
        assert allclose(linear_bias.grad, linear_bias_pt.grad, linear_bias_ref.grad)