Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp>
#include <cute/util/type_traits.hpp>
#include <cute/algorithm/functional.hpp>
#include <cute/tensor.hpp>
#include <cute/atom/mma_atom.hpp>
/** The gemm algorithm takes four (or three) tensors and computes
* D = A * B + C
* It dispatches based on the number of modes each tensor has:
*
* 1. `(V) x (V) => (V)`.
* The element-wise product of vectors. Dispatches to FMA or MMA.
* 2. `(M) x (N) => (M,N)`.
* The outer product of vectors. Dispatches to [3] with new mode K=(1).
* 3. `(M,K) x (N,K) => (M,N)`.
* The product of matrices. Dispatches to [5] with MMA vector-mode V.
* 4. `(V,M) x (V,N) => (V,M,N)`.
* The batched outer product of vectors. Accounts for register reuse and dispatches to [1] for each (m,n).
* 5. `(V,M,K) x (V,N,K) => (V,M,N)`.
* The batched product of matrices. Dispatches to [4] for each (k).
*/
namespace cute
{
//
// Three arguments to four
//
template <class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout>
CUTE_HOST_DEVICE
void
gemm(Tensor<TA, ALayout> const& A,
Tensor<TB, BLayout> const& B,
Tensor<TC, CLayout> & C)
{
return gemm(C, A, B, C);
}
template <class MMA,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout>
CUTE_HOST_DEVICE
void
gemm(MMA_Atom<MMA> const& mma,
Tensor<TA, ALayout> const& A,
Tensor<TB, BLayout> const& B,
Tensor<TC, CLayout> & C)
{
return gemm(mma, C, A, B, C);
}
//
// Accept mutable temporaries
//
template <class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout>
CUTE_HOST_DEVICE
void
gemm(Tensor<TA, ALayout> const& A,
Tensor<TB, BLayout> const& B,
Tensor<TC, CLayout> && C)
{
return gemm(C, A, B, C);
}
template <class TD, class DLayout,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout>
CUTE_HOST_DEVICE
void
gemm(Tensor<TD, DLayout> && D,
Tensor<TA, ALayout> const& A,
Tensor<TB, BLayout> const& B,
Tensor<TC, CLayout> const& C)
{
return gemm(D, A, B, C);
}
template <class MMA,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout>
CUTE_HOST_DEVICE
void
gemm(MMA_Atom<MMA> const& mma,
Tensor<TA, ALayout> const& A,
Tensor<TB, BLayout> const& B,
Tensor<TC, CLayout> && C)
{
return gemm(mma, C, A, B, C);
}
template <class MMA,
class TD, class DLayout,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout>
CUTE_HOST_DEVICE
void
gemm(MMA_Atom<MMA> const& mma,
Tensor<TD, DLayout> && D,
Tensor<TA, ALayout> const& A,
Tensor<TB, BLayout> const& B,
Tensor<TC, CLayout> const& C)
{
return gemm(mma, D, A, B, C);
}
//
// Default MMA is UniversalFMA
//
template <class TD, class DLayout,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout>
CUTE_HOST_DEVICE
void
gemm(Tensor<TD, DLayout> & D,
Tensor<TA, ALayout> const& A,
Tensor<TB, BLayout> const& B,
Tensor<TC, CLayout> const& C)
{
using MMA = MMA_Atom<UniversalFMA<typename Tensor<TD,DLayout>::value_type,
typename Tensor<TA,ALayout>::value_type,
typename Tensor<TB,BLayout>::value_type,
typename Tensor<TC,CLayout>::value_type>>;
return gemm(MMA{}, D, A, B, C);
}
//
// Thread-Local Register-Memory GEMMs
//
// Dispatch [1]: (V) x (V) => (V)
template <class MMA,
class TD, class DLayout,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout,
__CUTE_REQUIRES(DLayout::rank == 1 && is_rmem<TD>::value &&
ALayout::rank == 1 && is_rmem<TA>::value &&
BLayout::rank == 1 && is_rmem<TB>::value &&
CLayout::rank == 1 && is_rmem<TC>::value)>
CUTE_HOST_DEVICE
void
gemm(MMA_Atom<MMA> const& mma,
Tensor<TD, DLayout> & D, // (V) Logical data
Tensor<TA, ALayout> const& A, // (V) Logical data
Tensor<TB, BLayout> const& B, // (V) Logical data
Tensor<TC, CLayout> const& C) // (V) Logical data
{
// No static assertions on (V), MMA checks compatibility
mma.call(D, A, B, C);
}
// Dispatch [2]: (M) x (N) => (M,N)
template <class MMA,
class TD, class DLayout,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout,
__CUTE_REQUIRES(DLayout::rank == 2 && is_rmem<TD>::value &&
ALayout::rank == 1 && is_rmem<TA>::value &&
BLayout::rank == 1 && is_rmem<TB>::value &&
CLayout::rank == 2 && is_rmem<TC>::value)>
CUTE_HOST_DEVICE
void
gemm(MMA_Atom<MMA> const& mma,
Tensor<TD, DLayout> & D, // (M,N) Logical data
Tensor<TA, ALayout> const& A, // (M) Logical data
Tensor<TB, BLayout> const& B, // (N) Logical data
Tensor<TC, CLayout> const& C) // (M,N) Logical data
{
CUTE_STATIC_ASSERT_V(size<0>(A) == size<0>(C)); // AM == CM
CUTE_STATIC_ASSERT_V(size<0>(B) == size<1>(C)); // BN == CN
CUTE_STATIC_ASSERT_V(size<0>(C) == size<0>(D) && size<1>(C) == size<1>(D));
gemm(mma,
D, // (M,N)
make_tensor(A.data(), append<2>(A.layout())), // (M,1)
make_tensor(B.data(), append<2>(B.layout())), // (N,1)
C); // (M,N)
}
// Dispatch [3]: (M,K) x (N,K) => (M,N)
template <class MMA,
class TD, class DLayout,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout,
__CUTE_REQUIRES(DLayout::rank == 2 && is_rmem<TD>::value &&
ALayout::rank == 2 && is_rmem<TA>::value &&
BLayout::rank == 2 && is_rmem<TB>::value &&
CLayout::rank == 2 && is_rmem<TC>::value)>
CUTE_HOST_DEVICE
void
gemm(MMA_Atom<MMA> const& mma,
Tensor<TD, DLayout> & D, // (M,N) Logical data
Tensor<TA, ALayout> const& A, // (M,K) Logical data
Tensor<TB, BLayout> const& B, // (N,K) Logical data
Tensor<TC, CLayout> const& C) // (M,N) Logical data
{
CUTE_STATIC_ASSERT_V(size<0>(A) == size<0>(C)); // AM == CM
CUTE_STATIC_ASSERT_V(size<0>(B) == size<1>(C)); // BN == CN
CUTE_STATIC_ASSERT_V(size<1>(A) == size<1>(B)); // AK == BK
CUTE_STATIC_ASSERT_V(size<0>(C) == size<0>(D) && size<1>(C) == size<1>(D));
// Assert this is a 1-value MMA
CUTE_STATIC_ASSERT_V(size<1>(typename MMA_Atom<MMA>::LayoutC_TV{}) == Int<1>{});
CUTE_STATIC_ASSERT_V(size<1>(typename MMA_Atom<MMA>::LayoutA_TV{}) == Int<1>{});
CUTE_STATIC_ASSERT_V(size<1>(typename MMA_Atom<MMA>::LayoutB_TV{}) == Int<1>{});
gemm(mma,
make_tensor(D.data(), prepend<3>(D.layout())), // (1,M,N)
make_tensor(A.data(), prepend<3>(A.layout())), // (1,M,K)
make_tensor(B.data(), prepend<3>(B.layout())), // (1,N,K)
make_tensor(C.data(), prepend<3>(C.layout()))); // (1,M,N)
}
// Dispatch [4]: (V,M) x (V,N) => (V,M,N)
template <class MMA,
class TD, class DLayout,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout,
__CUTE_REQUIRES(DLayout::rank == 3 && is_rmem<TD>::value &&
ALayout::rank == 2 && is_rmem<TA>::value &&
BLayout::rank == 2 && is_rmem<TB>::value &&
CLayout::rank == 3 && is_rmem<TC>::value)>
CUTE_HOST_DEVICE
void
gemm(MMA_Atom<MMA> const& mma,
Tensor<TD, DLayout> & D, // (V,M,N) Logical data
Tensor<TA, ALayout> const& A, // (V,M) Logical data
Tensor<TB, BLayout> const& B, // (V,N) Logical data
Tensor<TC, CLayout> const& C) // (V,M,N) Logical data
{
CUTE_STATIC_ASSERT_V(size<1>(A) == size<1>(C)); // AM == CM
CUTE_STATIC_ASSERT_V(size<1>(B) == size<2>(C)); // BN == CN
CUTE_STATIC_ASSERT_V(size<0>(C) == size<0>(D) && size<1>(C) == size<1>(D) && size<2>(C) == size<2>(D));
auto M = size<1>(A);
auto N = size<1>(B);
// REGISTER .reuse OPTIMIZATIONS
// 64-bit traversal specialization -- serpentine path
if constexpr (decltype(size<0>(A))::value * sizeof(typename TA::value_type) == 8 &&
decltype(size<0>(B))::value * sizeof(typename TB::value_type) == 8)
{
#if 1 // NOTE: Row- vs Col- major could depend on the C-matrix order... (which we can test)
// Row-major serpentine iteration
CUTE_UNROLL
for (int m = 0; m < M; ++m) {
CUTE_UNROLL
for (int n = 0; n < N; ++n) {
int ns = (m & 1) ? N-1-n : n; // Serpentine coordinate
gemm(mma, D(_,m,ns), A(_,m), B(_,ns), C(_,m,ns));
}
}
#else
// Col-major serpentine iteration
CUTE_UNROLL
for (int n = 0; n < N; ++n) {
CUTE_UNROLL
for (int m = 0; m < M; ++m) {
int ms = (n & 1) ? M-1-m : m; // Serpentine coordinate
gemm(mma, D(_,ms,n), A(_,ms), B(_,n), C(_,ms,n));
}
}
#endif
} else
// 32-bit traversal specialization -- kinked serpentine path
if constexpr (decltype(size<0>(A))::value * sizeof(typename TA::value_type) == 4 &&
decltype(size<0>(B))::value * sizeof(typename TB::value_type) == 4)
{
#if 1 // NOTE: Row- vs Col- major could depend on the C-matrix order... (which we can test)
// Row-major kinked serpentine iteration
CUTE_UNROLL
for (int m = 0; m < M; m += 2) {
CUTE_UNROLL
for (int n = 0; n < N; ++n) {
int ns = (m & 2) ? N-1-n : n;
gemm(mma, D(_,m+0,ns), A(_,m+0), B(_,ns), C(_,m+0,ns));
if (m+1 < M) {
gemm(mma, D(_,m+1,ns), A(_,m+1), B(_,ns), C(_,m+1,ns));
}
}
}
#else
// Col-major kinked serpentine iteration
CUTE_UNROLL
for (int n = 0; n < N; n += 2) {
CUTE_UNROLL
for (int m = 0; m < M; ++m) {
// Kinked serpentine traversal for maximum register reuse
int ms = (n & 2) ? M-1-m : m;
gemm(mma, D(_,ms,n+0), A(_,ms), B(_,n+0), C(_,ms,n+0));
if (n+1 < N) {
gemm(mma, D(_,ms,n+1), A(_,ms), B(_,n+1), C(_,ms,n+1));
}
}
}
#endif
} else
// 64-bit + 32-bit traversal order -- keep A (64-bit) in the outer loop and serpentine B
if constexpr (decltype(size<0>(A))::value * sizeof(typename TA::value_type) == 8 &&
decltype(size<0>(B))::value * sizeof(typename TB::value_type) == 4) {
// Row-major serpentine iteration
CUTE_UNROLL
for (int m = 0; m < M; ++m) {
CUTE_UNROLL
for (int n = 0; n < N; ++n) {
int ns = (m & 1) ? N-1-n : n; // Serpentine coordinate
gemm(mma, D(_,m,ns), A(_,m), B(_,ns), C(_,m,ns));
}
}
} else
// 32-bit + 64-bit traversal order -- keep B (64-bit) in the outer loop and serpentine A
if constexpr (decltype(size<0>(A))::value * sizeof(typename TA::value_type) == 4 &&
decltype(size<0>(B))::value * sizeof(typename TB::value_type) == 8) {
// Col-major serpentine iteration
CUTE_UNROLL
for (int n = 0; n < N; ++n) {
CUTE_UNROLL
for (int m = 0; m < M; ++m) {
int ms = (n & 1) ? M-1-m : m; // Serpentine coordinate
gemm(mma, D(_,ms,n), A(_,ms), B(_,n), C(_,ms,n));
}
}
} else
// Fallback to serpentine loop
{
// Col-major serpentine iteration
CUTE_UNROLL
for (int n = 0; n < N; ++n) {
CUTE_UNROLL
for (int m = 0; m < M; ++m) {
int ms = (n & 1) ? M-1-m : m; // Serpentine coordinate
gemm(mma, D(_,ms,n), A(_,ms), B(_,n), C(_,ms,n));
}
}
}
}
// Dispatch [5]: (V,M,K) x (V,N,K) => (V,M,N)
template <class MMA,
class TD, class DLayout,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout,
__CUTE_REQUIRES(DLayout::rank == 3 && is_rmem<TD>::value &&
ALayout::rank == 3 && is_rmem<TA>::value &&
BLayout::rank == 3 && is_rmem<TB>::value &&
CLayout::rank == 3 && is_rmem<TC>::value)>
CUTE_HOST_DEVICE
void
gemm(MMA_Atom<MMA> const& mma,
Tensor<TD, DLayout> & D, // (V,M,N) Logical data
Tensor<TA, ALayout> const& A, // (V,M,K) Logical data
Tensor<TB, BLayout> const& B, // (V,N,K) Logical data
Tensor<TC, CLayout> const& C) // (V,M,N) Logical data
{
CUTE_STATIC_ASSERT_V(size<1>(A) == size<1>(C)); // AM == CM
CUTE_STATIC_ASSERT_V(size<1>(B) == size<2>(C)); // BN == CN
CUTE_STATIC_ASSERT_V(size<2>(A) == size<2>(B)); // AK == BK
CUTE_STATIC_ASSERT_V(size<0>(C) == size<0>(D) && size<1>(C) == size<1>(D) && size<2>(C) == size<2>(D));
auto K = size<2>(A);
CUTE_UNROLL
for (int k = 0; k < K; ++k) {
gemm(mma, D, A(_,_,k), B(_,_,k), C);
}
}
//
// Thread-Local Shared-Memory GEMMs
//
// Dispatch [1]: (V) x (V) => (V)
// Dispatch [2]: (M) x (N) => (M,N)
// Dispatch [3]: (M,K) x (N,K) => (M,N)
// Dispatch [4]: (V,M) x (V,N) => (V,M,N)
// Dispatch [5]: (V,M,K) x (V,N,K) => (V,M,N)
// Dispatch [3]: (M,K) x (N,K) => (M,N)
template <class MMA,
class TD, class DLayout,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout,
__CUTE_REQUIRES(DLayout::rank == 2 && is_rmem<TD>::value &&
ALayout::rank == 2 && is_smem<TA>::value &&
BLayout::rank == 2 && is_smem<TB>::value &&
CLayout::rank == 2 && is_rmem<TC>::value)>
CUTE_HOST_DEVICE
void
gemm(MMA_Atom<MMA> const& mma,
Tensor<TD, DLayout> & D, // (M,N) Logical data
Tensor<TA, ALayout> const& A, // (M,K) Logical data
Tensor<TB, BLayout> const& B, // (N,K) Logical data
Tensor<TC, CLayout> const& C) // (M,N) Logical data
{
CUTE_STATIC_ASSERT_V(size<0>(A) == size<0>(C)); // AM == CM
CUTE_STATIC_ASSERT_V(size<0>(B) == size<1>(C)); // BN == CN
CUTE_STATIC_ASSERT_V(size<1>(A) == size<1>(B)); // AK == BK
CUTE_STATIC_ASSERT_V(size<0>(C) == size<0>(D) && size<1>(C) == size<1>(D));
// Assert this is a 1-value MMA
CUTE_STATIC_ASSERT_V(size<1>(typename MMA_Atom<MMA>::LayoutC_TV{}) == Int<1>{});
CUTE_STATIC_ASSERT_V(size<1>(typename MMA_Atom<MMA>::LayoutA_TV{}) == Int<1>{});
CUTE_STATIC_ASSERT_V(size<1>(typename MMA_Atom<MMA>::LayoutB_TV{}) == Int<1>{});
gemm(mma,
make_tensor(D.data(), prepend<3>(D.layout())), // (1,M,N)
make_tensor(A.data(), prepend<3>(A.layout())), // (1,M,K)
make_tensor(B.data(), prepend<3>(B.layout())), // (1,N,K)
make_tensor(C.data(), prepend<3>(C.layout()))); // (1,M,N)
}
// Dispatch [5]: (V,M,K) x (V,N,K) => (V,M,N)
template <class MMA,
class TD, class DLayout,
class TA, class ALayout,
class TB, class BLayout,
class TC, class CLayout,
__CUTE_REQUIRES(DLayout::rank == 3 && is_rmem<TD>::value &&
ALayout::rank == 3 && is_smem<TA>::value &&
BLayout::rank == 3 && is_smem<TB>::value &&
CLayout::rank == 3 && is_rmem<TC>::value)>
CUTE_HOST_DEVICE
void
gemm(MMA_Atom<MMA> const& mma,
Tensor<TD, DLayout> & D, // (V,M,N) Logical data
Tensor<TA, ALayout> const& A, // (V,M,K) Logical data
Tensor<TB, BLayout> const& B, // (V,N,K) Logical data
Tensor<TC, CLayout> const& C) // (V,M,N) Logical data
{
CUTE_STATIC_ASSERT_V(size<1>(A) == size<1>(C)); // AM == CM
CUTE_STATIC_ASSERT_V(size<1>(B) == size<2>(C)); // BN == CN
CUTE_STATIC_ASSERT_V(size<2>(A) == size<2>(B)); // AK == BK
CUTE_STATIC_ASSERT_V(size<0>(C) == size<0>(D) && size<1>(C) == size<1>(D) && size<2>(C) == size<2>(D));
auto rA = MMA_Atom<MMA>::make_fragment_A(A);
auto rB = MMA_Atom<MMA>::make_fragment_B(B);
auto K = size<2>(A);
CUTE_UNROLL
for (int k = 0; k < K; ++k)
{
copy(A(_,_,k), rA(_,_,k));
copy(B(_,_,k), rB(_,_,k));
// Thread-level register gemm for k
gemm(mma, D, rA(_,_,k), rB(_,_,k), C);
}
}
} // end namespace cute