Spaces:
Sleeping
Sleeping
namespace flash { | |
using namespace cute; | |
//////////////////////////////////////////////////////////////////////////////////////////////////// | |
template <bool Is_causal> | |
struct Alibi { | |
const float alibi_slope; | |
const int max_seqlen_k, max_seqlen_q; | |
__forceinline__ __device__ Alibi(const float alibi_slope, const int max_seqlen_k, const int max_seqlen_q) | |
: alibi_slope(alibi_slope) | |
, max_seqlen_k(max_seqlen_k) | |
, max_seqlen_q(max_seqlen_q) { | |
}; | |
template <typename Engine, typename Layout> | |
__forceinline__ __device__ void apply_alibi(Tensor<Engine, Layout> &tensor, | |
const int col_idx_offset_, | |
const int row_idx_offset, | |
const int warp_row_stride) { | |
// tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N)) | |
static_assert(Layout::rank == 2, "Only support 2D Tensor"); | |
const int lane_id = threadIdx.x % 32; | |
const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2; | |
if constexpr (Is_causal) { // Simpler, we add the same bias vector to all rows | |
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) { | |
const int col_idx_base = col_idx_offset + nj * 8; | |
for (int j = 0; j < size<1, 0>(tensor); ++j) { | |
const int col_idx = col_idx_base + j; | |
for (int mi = 0; mi < size<0>(tensor); ++mi) { | |
tensor(mi, make_coord(j, nj)) += alibi_slope * col_idx; | |
} | |
} | |
} | |
} else { // Bias depends on both row_idx and col_idx | |
for (int mi = 0; mi < size<0, 1>(tensor); ++mi) { | |
const int row_idx_base = row_idx_offset + mi * warp_row_stride; | |
for (int i = 0; i < size<0, 0>(tensor); ++i) { | |
const int row_idx = row_idx_base + i * 8; | |
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) { | |
const int col_idx_base = col_idx_offset + nj * 8; | |
for (int j = 0; j < size<1, 0>(tensor); ++j) { | |
const int col_idx = col_idx_base + j; | |
tensor(make_coord(i, mi), make_coord(j, nj)) -= alibi_slope * abs(row_idx + max_seqlen_k - max_seqlen_q - col_idx); | |
} | |
} | |
} | |
} | |
} | |
} | |
}; | |
} // namespace flash | |