Spaces:
Sleeping
Sleeping
/* coding=utf-8 | |
* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
* | |
* Licensed under the Apache License, Version 2.0 (the "License"); | |
* you may not use this file except in compliance with the License. | |
* You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
*/ | |
namespace multihead_attn { | |
namespace fused_softmax { | |
namespace scaled_masked_softmax { | |
int get_batch_per_block_cuda(int query_seq_len, int key_seq_len, int batches, int attn_heads){ | |
return get_batch_per_block(query_seq_len, key_seq_len, batches, attn_heads); | |
} | |
torch::Tensor fwd_cuda( | |
torch::Tensor const& input, | |
torch::Tensor const& mask, | |
float scale_factor) | |
{ | |
// input is a 4d tensor with dimensions [batches, attn_heads, seq_len, seq_len] | |
const int batches = input.size(0); | |
const int pad_batches = mask.size(0); | |
const int attn_heads = input.size(1); | |
const int query_seq_len = input.size(2); | |
const int key_seq_len = input.size(3); | |
TORCH_INTERNAL_ASSERT(key_seq_len <= 8192); | |
TORCH_INTERNAL_ASSERT(query_seq_len > 1); | |
TORCH_INTERNAL_ASSERT(pad_batches == 1 || pad_batches == batches); | |
TORCH_INTERNAL_ASSERT(mask.size(1) == 1); | |
TORCH_INTERNAL_ASSERT(mask.size(2) == query_seq_len); | |
TORCH_INTERNAL_ASSERT(mask.size(3) == key_seq_len); | |
// Output | |
auto act_options = input.options().requires_grad(false); | |
torch::Tensor softmax_results = | |
torch::empty({batches, attn_heads, query_seq_len, key_seq_len}, act_options); | |
// Softmax Intermediate Result Ptr | |
void* input_ptr = static_cast<void*>(input.data_ptr()); | |
void* mask_ptr = static_cast<void*>(mask.data_ptr()); | |
void* softmax_results_ptr = static_cast<void*>(softmax_results.data_ptr()); | |
DISPATCH_HALF_AND_BFLOAT( | |
input.scalar_type(), | |
"dispatch_scaled_masked_softmax_forward", | |
dispatch_scaled_masked_softmax_forward<scalar_t, scalar_t, float>( | |
reinterpret_cast<scalar_t*>(softmax_results_ptr), | |
reinterpret_cast<const scalar_t*>(input_ptr), | |
reinterpret_cast<const uint8_t*>(mask_ptr), | |
scale_factor, | |
query_seq_len, | |
key_seq_len, | |
batches, | |
attn_heads, | |
pad_batches | |
); | |
); | |
return softmax_results; | |
} | |
torch::Tensor bwd_cuda( | |
torch::Tensor const& output_grads_, | |
torch::Tensor const& softmax_results_, | |
float scale_factor) { | |
auto output_grads = output_grads_.contiguous(); | |
auto softmax_results = softmax_results_.contiguous(); | |
//output grads is a 4d tensor with dimensions [batches, attn_heads, seq_len, seq_len] | |
const int batches = output_grads.size(0); | |
const int attn_heads = output_grads.size(1); | |
const int query_seq_len = output_grads.size(2); | |
const int key_seq_len = output_grads.size(3); | |
auto act_options = output_grads.options().requires_grad(false); | |
torch::Tensor input_grads = | |
torch::empty({batches, attn_heads, query_seq_len, key_seq_len}, act_options); | |
void* input_grads_ptr = static_cast<void*>(input_grads.data_ptr()); | |
void* output_grads_ptr = static_cast<void*>(output_grads.data_ptr()); | |
//Softmax Grad | |
DISPATCH_HALF_AND_BFLOAT( | |
output_grads_.scalar_type(), | |
"dispatch_scaled_masked_softmax_backward", | |
dispatch_scaled_masked_softmax_backward<scalar_t, scalar_t, float>( | |
reinterpret_cast<scalar_t*>(input_grads_ptr), | |
reinterpret_cast<scalar_t*>(output_grads_ptr), | |
reinterpret_cast<scalar_t const*>(softmax_results.data_ptr()), | |
scale_factor, | |
query_seq_len, | |
key_seq_len, | |
batches, | |
attn_heads | |
); | |
); | |
return input_grads; | |
} | |
} | |
} | |
} | |