Spaces:
Sleeping
Sleeping
namespace layer_norm { | |
template<typename Ktraits, bool Is_dropout, bool Has_colscale, bool Has_subset, bool Is_even_cols> | |
__global__ __launch_bounds__(Ktraits::THREADS_PER_CTA) | |
void ln_bwd_kernel(layer_norm::BwdParams params) { | |
enum { ROWS_PER_CTA = Ktraits::ROWS_PER_CTA }; | |
enum { WARPS_M = Ktraits::WARPS_M }; | |
enum { WARPS_N = Ktraits::WARPS_N }; | |
enum { THREADS_PER_ROW = Ktraits::THREADS_PER_ROW }; | |
enum { COLS = Ktraits::COLS }; | |
enum { BYTES_PER_ROW = Ktraits::BYTES_PER_ROW }; | |
enum { LDGS = Ktraits::LDGS }; | |
enum { NUM_ELTS = Ktraits::ELTS_PER_LDG }; | |
enum { THREADS_PER_WARP = Ktraits::THREADS_PER_WARP }; | |
enum { CTAS_PER_ROW = Ktraits::CTAS_PER_ROW }; | |
using input_t = typename Ktraits::input_t; | |
using compute_t = typename Ktraits::compute_t; | |
using index_t = typename Ktraits::index_t; | |
using mask_t = typename Ktraits::mask_t; | |
using Ivec = typename Ktraits::Ivec; | |
using Rvec = typename Ktraits::Rvec; | |
using Ovec = typename Ktraits::Ovec; | |
using Wvec = typename Ktraits::Wvec; | |
using Cvec = typename Ktraits::Cvec; | |
using Mvec = typename Ktraits::Mvec; | |
using Reducer = typename Ktraits::Reducer; | |
using reduce_t = typename Reducer::Type; | |
extern __shared__ char smem_[]; | |
const bool has_residual = params.dresidual != nullptr; | |
const bool prenorm = params.dx != nullptr; | |
const index_t tidx = threadIdx.x; | |
const index_t bidn = blockIdx.x % CTAS_PER_ROW; | |
const index_t bidm = blockIdx.x / CTAS_PER_ROW; | |
const index_t lane = tidx % THREADS_PER_WARP; | |
const index_t warp = tidx / THREADS_PER_WARP; | |
const index_t warp_m = warp / Ktraits::WARPS_N; | |
const index_t warp_n = warp % Ktraits::WARPS_N; | |
const index_t tid_r = warp_n * THREADS_PER_WARP + lane; | |
const index_t r = bidm * Ktraits::ROWS_PER_CTA + warp_m; | |
const index_t c = bidn * THREADS_PER_ROW + warp_n * THREADS_PER_WARP + lane; | |
static_assert(COLS == THREADS_PER_ROW * LDGS * NUM_ELTS * CTAS_PER_ROW); | |
const input_t *rowscale = static_cast<input_t *>(params.rowscale); | |
const index_t *x0_subset = static_cast<index_t *>(params.x0_subset); | |
const index_t *z_subset = static_cast<index_t *>(params.z_subset); | |
Cvec dzy_sum[LDGS]; | |
Cvec dz_sum[LDGS]; | |
Cvec dcolscale_sum[LDGS]; | |
memset(dzy_sum, 0, sizeof(dzy_sum)); | |
memset(dz_sum, 0, sizeof(dz_sum)); | |
if (Has_colscale) { memset(dcolscale_sum, 0, sizeof(dcolscale_sum)); } | |
compute_t * smem_wgrad = reinterpret_cast<compute_t*>(smem_); | |
char *smem_dgrad = smem_ + Ktraits::SMEM_BYTES_WGRAD; | |
Reducer reducer(params, bidm, bidn, warp_m, warp_n, lane, smem_dgrad); | |
Sum<reduce_t> sum; | |
const index_t num_valid_ldgs = | |
((params.cols / Ktraits::ELTS_PER_LDG) - 1 - c + Ktraits::VEC_COLS_PER_LDG) / Ktraits::VEC_COLS_PER_LDG; | |
Wvec gamma[LDGS]; | |
Wvec colscale[LDGS]; | |
index_t idx = c; | |
for( int it = 0; it < LDGS; it++ ) { | |
if (Is_even_cols || (it < num_valid_ldgs)) { | |
gamma[it].load_from(params.gamma, idx); | |
if (Has_colscale) { colscale[it].load_from(params.colscale, idx); } | |
idx += Ktraits::VEC_COLS_PER_LDG; | |
} | |
} | |
// TODO if ROWS_PER_CTA does not divide rows, we might get divergence in the | |
// last blocks with syncthreads! | |
// grid stride over rows | |
for( int row = r; row < params.rows; row += params.ctas_per_col * ROWS_PER_CTA ) { | |
const compute_t mu_r = static_cast<const compute_t *>(params.mu)[row]; | |
const compute_t rs_r = static_cast<const compute_t *>(params.rs)[row]; | |
const compute_t rowscale_val = !Has_subset ? (params.rowscale == nullptr ? 1.0f : compute_t(rowscale[row])) : params.rowscale_const; | |
const int row_z = !Has_subset ? row + 1 : z_subset[row]; | |
const int row_x0 = !Has_subset ? row + 1 : x0_subset[row]; | |
const bool load_dz = !Has_subset || row_z > 0; | |
const bool save_dx0 = !Has_subset || row_x0 > 0; | |
Mvec dmask[LDGS]; | |
Rvec dx[LDGS]; | |
compute_t dy[LDGS * NUM_ELTS]; | |
compute_t y[LDGS * NUM_ELTS]; | |
compute_t mdy_local = 0.f; | |
compute_t mdyy_local = 0.f; | |
// If dz is not loaded, then dy should be 0 and we don't care about the value of y. | |
if (load_dz) { | |
index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c; | |
index_t idx_z = !Has_subset ? idx_x : (load_dz ? (row_z - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0); | |
index_t idx_x0 = !Has_subset ? idx_x : (save_dx0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0); | |
for( int it = 0; it < LDGS; it++ ) { | |
if (Is_even_cols || (it < num_valid_ldgs)) { | |
Rvec x; | |
Ovec dz; | |
dz.load_from(params.dz, !Has_subset ? idx_x : idx_z); | |
if (prenorm) { dx[it].load_from(params.dx, idx_x); } | |
x.load_from(params.x, idx_x); | |
if (Is_dropout) { dmask[it].load_from(params.dmask, !Has_subset ? idx_x : idx_x0); } | |
idx_x += Ktraits::VEC_COLS_PER_LDG; | |
idx_z += Ktraits::VEC_COLS_PER_LDG; | |
idx_x0 += Ktraits::VEC_COLS_PER_LDG; | |
for( int jt = 0; jt < NUM_ELTS; jt++ ) { | |
compute_t x_tmp = x.data.elt[jt]; | |
compute_t y_tmp = rs_r * (x_tmp - (!params.is_rms_norm ? mu_r : 0.f)); | |
compute_t dy_tmp = compute_t(gamma[it].data.elt[jt]) * compute_t(dz.data.elt[jt]); | |
compute_t dz_tmp = dz.data.elt[jt]; | |
mdy_local += dy_tmp; | |
mdyy_local += dy_tmp * y_tmp; | |
dy[it * NUM_ELTS + jt] = dy_tmp; | |
y[it * NUM_ELTS + jt] = y_tmp; | |
dzy_sum[it].data.elt[jt] += dz_tmp * y_tmp; | |
dz_sum[it].data.elt[jt] += dz_tmp; | |
} | |
} | |
} | |
} else { | |
index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c; | |
index_t idx_x0 = !Has_subset ? idx_x : (save_dx0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0); | |
for( int it = 0; it < LDGS; it++ ) { | |
if (Is_even_cols || (it < num_valid_ldgs)) { | |
if (prenorm) { dx[it].load_from(params.dx, idx_x); } | |
if (Is_dropout) { dmask[it].load_from(params.dmask, !Has_subset ? idx_x : idx_x0); } | |
idx_x += Ktraits::VEC_COLS_PER_LDG; | |
idx_x0 += Ktraits::VEC_COLS_PER_LDG; | |
} | |
} | |
} | |
reduce_t result = reducer.allreduce({mdy_local, mdyy_local}, sum); | |
mdy_local = layer_norm::Get<0>::of<reduce_t, compute_t>(result) * params.inverse_cols; | |
mdyy_local = layer_norm::Get<1>::of<reduce_t, compute_t>(result) * params.inverse_cols; | |
index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c; | |
index_t idx_x0 = !Has_subset ? idx_x : (save_dx0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0); | |
for( int it = 0; it < LDGS; it++ ) { | |
if (Is_even_cols || (it < num_valid_ldgs)) { | |
Ivec dx0; | |
Rvec dresidual; | |
Ivec x0; | |
if (Has_colscale && save_dx0) { x0.load_from(params.x0, !Has_subset ? idx_x : idx_x0); } | |
for( int jt = 0; jt < NUM_ELTS; jt++ ) { | |
compute_t dx_tmp_res; | |
if (load_dz) { | |
compute_t dy_tmp = dy[it * NUM_ELTS + jt]; | |
compute_t y_tmp = y[it * NUM_ELTS + jt]; | |
compute_t dx_tmp = rs_r * (dy_tmp - (mdyy_local * y_tmp + (!params.is_rms_norm ? mdy_local : 0.f))); | |
dx_tmp_res = prenorm ? dx_tmp + compute_t(dx[it].data.elt[jt]) : dx_tmp; | |
} else { | |
dx_tmp_res = prenorm ? compute_t(dx[it].data.elt[jt]) : 0.f; | |
} | |
if (has_residual) { dresidual.data.elt[jt] = dx_tmp_res; } | |
if (save_dx0) { | |
compute_t dx0_tmp_res = dx_tmp_res * rowscale_val; | |
if (Is_dropout) { | |
dx0_tmp_res *= params.dropout_scale; | |
if (Has_colscale) { | |
dcolscale_sum[it].data.elt[jt] += dmask[it].data.elt[jt] ? dx0_tmp_res * compute_t(x0.data.elt[jt]) : 0.f; | |
dx0.data.elt[jt] = dmask[it].data.elt[jt] ? dx0_tmp_res * compute_t(colscale[it].data.elt[jt]) : 0.f; | |
} else { | |
dx0.data.elt[jt] = dmask[it].data.elt[jt] ? dx0_tmp_res : 0.f; | |
} | |
} else { | |
if (Has_colscale) { | |
dcolscale_sum[it].data.elt[jt] += dx0_tmp_res * compute_t(x0.data.elt[jt]); | |
dx0.data.elt[jt] = dx0_tmp_res * compute_t(colscale[it].data.elt[jt]); | |
} else { | |
dx0.data.elt[jt] = dx0_tmp_res; | |
} | |
} | |
} | |
} | |
if (has_residual) { dresidual.store_to(params.dresidual, idx_x); } | |
if (save_dx0) { dx0.store_to(params.dx0, !Has_subset ? idx_x : idx_x0); } | |
idx_x += Ktraits::VEC_COLS_PER_LDG; | |
idx_x0 += Ktraits::VEC_COLS_PER_LDG; | |
} | |
} | |
} // end: grid stride loop | |
if( WARPS_M == 1 ) { | |
idx = r * params.cols / Ktraits::ELTS_PER_LDG + c; | |
for( int it = 0; it < LDGS; it++ ) { | |
if (Is_even_cols || (it < num_valid_ldgs)) { | |
dz_sum[it].store_to(params.dbeta_part, idx); | |
dzy_sum[it].store_to(params.dgamma_part, idx); | |
if (Has_colscale) { dcolscale_sum[it].store_to(params.dcolscale_part, idx); } | |
idx += Ktraits::VEC_COLS_PER_LDG; | |
} | |
} | |
} else { | |
static_assert(WARPS_M == 1 || Ktraits::CTAS_PER_ROW == 1, "Multiple rows per CTA not supported for Multi-CTA."); | |
// Finalize reduction of part dgamma and dbeta for this CTA | |
// by reducing over the rows held across the WARPS_M warps | |
// Assumption: blockSize divides hidden size. | |
enum { NUM_RES = COLS / Ktraits::THREADS_PER_CTA }; | |
static_assert(NUM_RES * Ktraits::THREADS_PER_CTA == COLS, ""); | |
idx = warp_m * Ktraits::VEC_COLS + tid_r; | |
for( int it = 0; it < LDGS; it++ ) { | |
dz_sum[it].store_to(smem_wgrad, idx); | |
idx += THREADS_PER_ROW; | |
} | |
__syncthreads(); | |
compute_t cta_dz_sum[NUM_RES]; | |
memset(cta_dz_sum, 0, sizeof(compute_t) * NUM_RES); | |
for( int it = 0; it < ROWS_PER_CTA; it++ ) { | |
for( int jt = 0; jt < NUM_RES; jt++ ) { | |
cta_dz_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA]; | |
} | |
} | |
__syncthreads(); | |
idx = warp_m * Ktraits::VEC_COLS + tid_r; | |
for( int it = 0; it < LDGS; it++ ) { | |
dzy_sum[it].store_to(smem_wgrad, idx); | |
idx += THREADS_PER_ROW; | |
} | |
__syncthreads(); | |
compute_t cta_dzy_sum[NUM_RES]; | |
memset(cta_dzy_sum, 0, sizeof(compute_t) * NUM_RES); | |
for( int it = 0; it < ROWS_PER_CTA; it++ ) { | |
for( int jt = 0; jt < NUM_RES; jt++ ) { | |
cta_dzy_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA]; | |
} | |
} | |
compute_t cta_dcolscale_sum[NUM_RES]; | |
if (Has_colscale) { | |
__syncthreads(); | |
idx = warp_m * Ktraits::VEC_COLS + tid_r; | |
for( int it = 0; it < LDGS; it++ ) { | |
dcolscale_sum[it].store_to(smem_wgrad, idx); | |
idx += THREADS_PER_ROW; | |
} | |
__syncthreads(); | |
memset(cta_dcolscale_sum, 0, sizeof(compute_t) * NUM_RES); | |
for( int it = 0; it < ROWS_PER_CTA; it++ ) { | |
for( int jt = 0; jt < NUM_RES; jt++ ) { | |
cta_dcolscale_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA]; | |
} | |
} | |
} | |
const index_t num_valid_writes | |
= (params.cols - 1 - tidx + Ktraits::THREADS_PER_CTA) / Ktraits::THREADS_PER_CTA; | |
compute_t *dgamma_part = static_cast<compute_t *>(params.dgamma_part) + bidm * params.cols + tidx; | |
compute_t *dbeta_part = static_cast<compute_t *>(params.dbeta_part) + bidm * params.cols + tidx; | |
compute_t *dcolscale_part = Has_colscale ? static_cast<compute_t *>(params.dcolscale_part) + bidm * params.cols + tidx : nullptr; | |
for( int jt = 0; jt < NUM_RES; jt++ ) { | |
if (Is_even_cols || (jt < num_valid_writes)) { | |
*dgamma_part = cta_dzy_sum[jt]; | |
dgamma_part += Ktraits::THREADS_PER_CTA; | |
*dbeta_part = cta_dz_sum[jt]; | |
dbeta_part += Ktraits::THREADS_PER_CTA; | |
if (Has_colscale) { | |
*dcolscale_part = cta_dcolscale_sum[jt]; | |
dcolscale_part += Ktraits::THREADS_PER_CTA; | |
} | |
} | |
} | |
} | |
} | |
template<typename Kernel_traits, bool Has_colscale, bool Is_even_cols> | |
__global__ __launch_bounds__(Kernel_traits::THREADS_PER_CTA) | |
void ln_bwd_finalize_kernel(BwdParams params) | |
{ | |
using compute_t = typename Kernel_traits::compute_t; | |
using weight_t = typename Kernel_traits::weight_t; | |
using index_t = typename Kernel_traits::index_t; | |
using Reducer = typename Kernel_traits::Reducer; | |
using reduce_t = typename Reducer::Type; | |
Sum<reduce_t> sum; | |
enum { NUM_ELT = Kernel_traits::ELTS_PER_LDG }; | |
enum { THREADS_PER_WARP = Kernel_traits::THREADS_PER_WARP }; | |
__shared__ char smem_[Kernel_traits::SMEM_BYTES_PER_CTA]; | |
constexpr uint32_t bidm = 0; | |
const uint32_t bidn = blockIdx.x; | |
const uint32_t tidx = threadIdx.x; | |
const uint32_t warp = tidx / THREADS_PER_WARP; | |
const uint32_t lane = tidx % THREADS_PER_WARP; | |
Reducer reducer(params, bidm, bidn, 0, 0, lane, smem_); | |
const uint32_t c = bidn * THREADS_PER_WARP + lane; | |
const uint32_t c_out = bidn * THREADS_PER_WARP / 2 + lane; | |
constexpr uint32_t COL_STRIDE = Kernel_traits::CTAS * THREADS_PER_WARP; | |
for( uint32_t col = c, col_out = c_out; col < Kernel_traits::COLS; col += COL_STRIDE, col_out += COL_STRIDE / 2 ) { | |
// Each thread sums over NUM_ELT columns. | |
Vec<compute_t, NUM_ELT> dbeta_local, dgamma_local, dcolscale_local; | |
memset(&dgamma_local, 0, sizeof(dgamma_local)); | |
memset(&dbeta_local, 0, sizeof(dbeta_local)); | |
if (Has_colscale) { memset(&dcolscale_local, 0, sizeof(dcolscale_local)); } | |
if (Is_even_cols || col < params.cols) { | |
for( uint32_t row = warp; row < params.ctas_per_col; row += Kernel_traits::ROWS_PER_CTA ) { | |
index_t idx = row * params.cols + col; | |
Vec<compute_t, NUM_ELT> dbeta_part, dgamma_part, dcolscale_part; | |
dbeta_part.load_from(params.dbeta_part, idx); | |
dgamma_part.load_from(params.dgamma_part, idx); | |
if (Has_colscale) { dcolscale_part.load_from(params.dcolscale_part, idx); } | |
for( int it = 0; it < NUM_ELT; it++ ) { | |
dgamma_local.data.elt[it] += dgamma_part.data.elt[it]; | |
dbeta_local.data.elt[it] += dbeta_part.data.elt[it]; | |
if (Has_colscale) { dcolscale_local.data.elt[it] += dcolscale_part.data.elt[it]; } | |
} | |
} | |
} | |
void * smem_gamma = smem_; | |
void * smem_beta = &smem_[Kernel_traits::SMEM_BYTES_TRANSPOSE]; | |
void * smem_colscale = &smem_[2 * Kernel_traits::SMEM_BYTES_TRANSPOSE]; | |
const int write_row = warp; | |
const int write_col = lane ^ write_row; | |
const int write_idx = write_row * THREADS_PER_WARP + write_col; | |
dgamma_local.store_to(smem_gamma, write_idx); | |
dbeta_local.store_to(smem_beta, write_idx); | |
if (Has_colscale) { dcolscale_local.store_to(smem_colscale, write_idx); } | |
__syncthreads(); | |
// It would be probably safe to reuse the first row of smem_beta and smem_gamma | |
void * smem_gamma_out = &smem_[Kernel_traits::NUM_FACTORS * Kernel_traits::SMEM_BYTES_TRANSPOSE]; | |
void * smem_beta_out = &smem_[Kernel_traits::NUM_FACTORS * Kernel_traits::SMEM_BYTES_TRANSPOSE + Kernel_traits::SMEM_BYTES_OUTPUT]; | |
void * smem_colscale_out = &smem_[Kernel_traits::NUM_FACTORS * Kernel_traits::SMEM_BYTES_TRANSPOSE + 2 * Kernel_traits::SMEM_BYTES_OUTPUT]; | |
// More than one iter iff ROWS_PER_CTA < 32. | |
for( int w = warp; w < THREADS_PER_WARP; w += Kernel_traits::ROWS_PER_CTA ) { | |
const int read_row = lane; | |
const int read_col = w ^ read_row; | |
const int read_idx = read_row * THREADS_PER_WARP + read_col; | |
memset(&dbeta_local, 0, sizeof(dbeta_local)); | |
memset(&dgamma_local, 0, sizeof(dgamma_local)); | |
if (Has_colscale) { memset(&dcolscale_local, 0, sizeof(dcolscale_local)); } | |
// Load beta and gamma transposed | |
if(read_row < Kernel_traits::ROWS_PER_CTA){ | |
dbeta_local.load_from(smem_beta, read_idx); | |
dgamma_local.load_from(smem_gamma, read_idx); | |
if (Has_colscale) { dcolscale_local.load_from(smem_colscale, read_idx); } | |
} | |
// Call reducer on the loaded value(s) and convert. | |
for( int it = 0; it < NUM_ELT; it++ ) { | |
compute_t b_i = dbeta_local.data.elt[it]; | |
compute_t g_i = dgamma_local.data.elt[it]; | |
b_i = reducer.allreduce(b_i, sum); | |
g_i = reducer.allreduce(g_i, sum); | |
dgamma_local.data.elt[it] = g_i; | |
dbeta_local.data.elt[it] = b_i; | |
if (Has_colscale) { | |
compute_t cs_i = dcolscale_local.data.elt[it]; | |
cs_i = reducer.allreduce(cs_i, sum); | |
dcolscale_local.data.elt[it] = cs_i; | |
} | |
} | |
// Leader stores the result at the current column. | |
if(lane == 0){ | |
dgamma_local.store_to(smem_gamma_out, w); | |
dbeta_local.store_to(smem_beta_out, w); | |
if (Has_colscale) { dcolscale_local.store_to(smem_colscale_out, w); } | |
} | |
} | |
// All writes done. | |
__syncthreads(); | |
// Pack and store: 2-wide stores with half the threads. | |
if (Is_even_cols || col_out * 2 < params.cols) { | |
if( warp == Kernel_traits::ROWS_PER_CTA - 1 && lane < THREADS_PER_WARP / 2 ) { | |
using src_t = typename TypeToVec2<compute_t>::Type; | |
using dst_t = typename TypeToVec2<weight_t>::Type; | |
Vec<src_t, NUM_ELT> dbeta_vec2, dgamma_vec2, dcolscale_vec2; | |
Vec<dst_t, NUM_ELT> dbeta_out2, dgamma_out2, dcolscale_out2; | |
dgamma_vec2.load_from(smem_gamma_out, lane); | |
dbeta_vec2.load_from(smem_beta_out, lane); | |
if (Has_colscale) { dcolscale_vec2.load_from(smem_colscale_out, lane); } | |
for( int it = 0; it < NUM_ELT; it++ ) { | |
dgamma_out2.data.elt[it] = Converter<src_t,dst_t>::convert(dgamma_vec2.data.elt[it]); | |
dbeta_out2.data.elt[it] = Converter<src_t,dst_t>::convert(dbeta_vec2.data.elt[it]); | |
if (Has_colscale) { dcolscale_out2.data.elt[it] = Converter<src_t,dst_t>::convert(dcolscale_vec2.data.elt[it]); } | |
} | |
dgamma_out2.store_to(params.dgamma, col_out); | |
dbeta_out2.store_to(params.dbeta, col_out); | |
if (Has_colscale) { dcolscale_out2.store_to(params.dcolscale, col_out); } | |
} | |
} | |
} | |
} | |
} // namespace layer_norm | |
using namespace layer_norm; | |
template< | |
typename weight_t, | |
typename input_t, | |
typename residual_t, | |
typename output_t, | |
typename compute_t, | |
typename index_t, | |
int HIDDEN_SIZE, | |
int CTAS_PER_ROW, | |
int WARPS_M, | |
int WARPS_N, | |
int BYTES_PER_LDG_MAIN, | |
int BYTES_PER_LDG_FINAL | |
> | |
void launch_(LaunchParams<BwdParams> &launch_params, const bool configure_params){ | |
using Kernel_traits = Kernel_traits<weight_t, | |
input_t, | |
residual_t, | |
output_t, | |
compute_t, | |
index_t, | |
HIDDEN_SIZE, | |
CTAS_PER_ROW, | |
WARPS_M, | |
WARPS_N, | |
BYTES_PER_LDG_MAIN | |
>; | |
bool is_dropout = launch_params.params.dropout_keep_p < 1.f; | |
bool has_colscale = launch_params.params.colscale != nullptr; | |
bool has_subset = launch_params.params.x0_subset != nullptr; | |
bool is_even_cols = launch_params.params.cols == HIDDEN_SIZE; | |
BOOL_SWITCH(is_dropout, IsDropoutConst, [&] { | |
BOOL_SWITCH(has_colscale, HasColscaleConst, [&] { | |
BOOL_SWITCH(has_subset, HasSubsetConst, [&] { | |
BOOL_SWITCH(is_even_cols, IsEvenColsConst, [&] { | |
auto kernel = &ln_bwd_kernel<Kernel_traits, IsDropoutConst, HasColscaleConst, HasSubsetConst, IsEvenColsConst>; | |
if( configure_params ) { | |
int ctas_per_sm; | |
CHECK_CUDA(cudaOccupancyMaxActiveBlocksPerMultiprocessor( | |
&ctas_per_sm, kernel, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES)); | |
launch_params.params.ctas_per_col = launch_params.props->multiProcessorCount * ctas_per_sm / Kernel_traits::CTAS_PER_ROW; | |
launch_params.barrier_size = 0; | |
launch_params.workspace_bytes = 0; | |
if(Kernel_traits::CTAS_PER_ROW > 1) { | |
launch_params.barrier_size = 2 * launch_params.params.ctas_per_col; | |
launch_params.workspace_bytes = launch_params.params.ctas_per_col | |
* Kernel_traits::WARPS_M | |
* Kernel_traits::CTAS_PER_ROW | |
* sizeof(typename Kernel_traits::reduce_t) | |
* 2; | |
} | |
return; | |
} | |
if( Kernel_traits::SMEM_BYTES >= 48 * 1024 ) { | |
CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::SMEM_BYTES)); | |
} | |
auto stream = launch_params.stream; | |
auto ctas_per_col = launch_params.params.ctas_per_col; | |
if( Kernel_traits::CTAS_PER_ROW == 1 ) { | |
kernel<<<ctas_per_col, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES, stream>>>(launch_params.params); | |
} else { | |
dim3 grid(Kernel_traits::CTAS_PER_ROW * ctas_per_col); | |
dim3 block(Kernel_traits::THREADS_PER_CTA); | |
void *params_ = (void *)&launch_params.params; | |
cudaLaunchCooperativeKernel((void *)kernel, grid, block, (void **)¶ms_, Kernel_traits::SMEM_BYTES, stream); | |
} | |
using Kernel_traits_f = layer_norm::Kernel_traits_finalize<HIDDEN_SIZE, | |
weight_t, | |
input_t, | |
residual_t, | |
output_t, | |
compute_t, | |
index_t, | |
HasColscaleConst, | |
32 * 32, // THREADS_PER_CTA | |
BYTES_PER_LDG_FINAL>; | |
auto kernel_f = &layer_norm::ln_bwd_finalize_kernel<Kernel_traits_f, HasColscaleConst, IsEvenColsConst>; | |
kernel_f<<<Kernel_traits_f::CTAS, Kernel_traits_f::THREADS_PER_CTA, 0, stream>>>(launch_params.params); | |
}); | |
}); | |
}); | |
}); | |
} | |