Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
#pragma once
#include "ln.h"
#include "ln_utils.cuh"
#include "ln_kernel_traits.h"
#include "static_switch.h"
namespace layer_norm {
template<typename Ktraits, bool Is_dropout, bool Has_colscale, bool Has_subset, bool Is_even_cols>
__global__ __launch_bounds__(Ktraits::THREADS_PER_CTA)
void ln_bwd_kernel(layer_norm::BwdParams params) {
enum { ROWS_PER_CTA = Ktraits::ROWS_PER_CTA };
enum { WARPS_M = Ktraits::WARPS_M };
enum { WARPS_N = Ktraits::WARPS_N };
enum { THREADS_PER_ROW = Ktraits::THREADS_PER_ROW };
enum { COLS = Ktraits::COLS };
enum { BYTES_PER_ROW = Ktraits::BYTES_PER_ROW };
enum { LDGS = Ktraits::LDGS };
enum { NUM_ELTS = Ktraits::ELTS_PER_LDG };
enum { THREADS_PER_WARP = Ktraits::THREADS_PER_WARP };
enum { CTAS_PER_ROW = Ktraits::CTAS_PER_ROW };
using input_t = typename Ktraits::input_t;
using compute_t = typename Ktraits::compute_t;
using index_t = typename Ktraits::index_t;
using mask_t = typename Ktraits::mask_t;
using Ivec = typename Ktraits::Ivec;
using Rvec = typename Ktraits::Rvec;
using Ovec = typename Ktraits::Ovec;
using Wvec = typename Ktraits::Wvec;
using Cvec = typename Ktraits::Cvec;
using Mvec = typename Ktraits::Mvec;
using Reducer = typename Ktraits::Reducer;
using reduce_t = typename Reducer::Type;
extern __shared__ char smem_[];
const bool has_residual = params.dresidual != nullptr;
const bool prenorm = params.dx != nullptr;
const index_t tidx = threadIdx.x;
const index_t bidn = blockIdx.x % CTAS_PER_ROW;
const index_t bidm = blockIdx.x / CTAS_PER_ROW;
const index_t lane = tidx % THREADS_PER_WARP;
const index_t warp = tidx / THREADS_PER_WARP;
const index_t warp_m = warp / Ktraits::WARPS_N;
const index_t warp_n = warp % Ktraits::WARPS_N;
const index_t tid_r = warp_n * THREADS_PER_WARP + lane;
const index_t r = bidm * Ktraits::ROWS_PER_CTA + warp_m;
const index_t c = bidn * THREADS_PER_ROW + warp_n * THREADS_PER_WARP + lane;
static_assert(COLS == THREADS_PER_ROW * LDGS * NUM_ELTS * CTAS_PER_ROW);
const input_t *rowscale = static_cast<input_t *>(params.rowscale);
const index_t *x0_subset = static_cast<index_t *>(params.x0_subset);
const index_t *z_subset = static_cast<index_t *>(params.z_subset);
Cvec dzy_sum[LDGS];
Cvec dz_sum[LDGS];
Cvec dcolscale_sum[LDGS];
memset(dzy_sum, 0, sizeof(dzy_sum));
memset(dz_sum, 0, sizeof(dz_sum));
if (Has_colscale) { memset(dcolscale_sum, 0, sizeof(dcolscale_sum)); }
compute_t * smem_wgrad = reinterpret_cast<compute_t*>(smem_);
char *smem_dgrad = smem_ + Ktraits::SMEM_BYTES_WGRAD;
Reducer reducer(params, bidm, bidn, warp_m, warp_n, lane, smem_dgrad);
Sum<reduce_t> sum;
const index_t num_valid_ldgs =
((params.cols / Ktraits::ELTS_PER_LDG) - 1 - c + Ktraits::VEC_COLS_PER_LDG) / Ktraits::VEC_COLS_PER_LDG;
Wvec gamma[LDGS];
Wvec colscale[LDGS];
index_t idx = c;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
if (Is_even_cols || (it < num_valid_ldgs)) {
gamma[it].load_from(params.gamma, idx);
if (Has_colscale) { colscale[it].load_from(params.colscale, idx); }
idx += Ktraits::VEC_COLS_PER_LDG;
}
}
// TODO if ROWS_PER_CTA does not divide rows, we might get divergence in the
// last blocks with syncthreads!
// grid stride over rows
#pragma unroll 1
for( int row = r; row < params.rows; row += params.ctas_per_col * ROWS_PER_CTA ) {
const compute_t mu_r = static_cast<const compute_t *>(params.mu)[row];
const compute_t rs_r = static_cast<const compute_t *>(params.rs)[row];
const compute_t rowscale_val = !Has_subset ? (params.rowscale == nullptr ? 1.0f : compute_t(rowscale[row])) : params.rowscale_const;
const int row_z = !Has_subset ? row + 1 : z_subset[row];
const int row_x0 = !Has_subset ? row + 1 : x0_subset[row];
const bool load_dz = !Has_subset || row_z > 0;
const bool save_dx0 = !Has_subset || row_x0 > 0;
Mvec dmask[LDGS];
Rvec dx[LDGS];
compute_t dy[LDGS * NUM_ELTS];
compute_t y[LDGS * NUM_ELTS];
compute_t mdy_local = 0.f;
compute_t mdyy_local = 0.f;
// If dz is not loaded, then dy should be 0 and we don't care about the value of y.
if (load_dz) {
index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c;
index_t idx_z = !Has_subset ? idx_x : (load_dz ? (row_z - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0);
index_t idx_x0 = !Has_subset ? idx_x : (save_dx0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0);
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
if (Is_even_cols || (it < num_valid_ldgs)) {
Rvec x;
Ovec dz;
dz.load_from(params.dz, !Has_subset ? idx_x : idx_z);
if (prenorm) { dx[it].load_from(params.dx, idx_x); }
x.load_from(params.x, idx_x);
if (Is_dropout) { dmask[it].load_from(params.dmask, !Has_subset ? idx_x : idx_x0); }
idx_x += Ktraits::VEC_COLS_PER_LDG;
idx_z += Ktraits::VEC_COLS_PER_LDG;
idx_x0 += Ktraits::VEC_COLS_PER_LDG;
#pragma unroll
for( int jt = 0; jt < NUM_ELTS; jt++ ) {
compute_t x_tmp = x.data.elt[jt];
compute_t y_tmp = rs_r * (x_tmp - (!params.is_rms_norm ? mu_r : 0.f));
compute_t dy_tmp = compute_t(gamma[it].data.elt[jt]) * compute_t(dz.data.elt[jt]);
compute_t dz_tmp = dz.data.elt[jt];
mdy_local += dy_tmp;
mdyy_local += dy_tmp * y_tmp;
dy[it * NUM_ELTS + jt] = dy_tmp;
y[it * NUM_ELTS + jt] = y_tmp;
dzy_sum[it].data.elt[jt] += dz_tmp * y_tmp;
dz_sum[it].data.elt[jt] += dz_tmp;
}
}
}
} else {
index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c;
index_t idx_x0 = !Has_subset ? idx_x : (save_dx0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0);
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
if (Is_even_cols || (it < num_valid_ldgs)) {
if (prenorm) { dx[it].load_from(params.dx, idx_x); }
if (Is_dropout) { dmask[it].load_from(params.dmask, !Has_subset ? idx_x : idx_x0); }
idx_x += Ktraits::VEC_COLS_PER_LDG;
idx_x0 += Ktraits::VEC_COLS_PER_LDG;
}
}
}
reduce_t result = reducer.allreduce({mdy_local, mdyy_local}, sum);
mdy_local = layer_norm::Get<0>::of<reduce_t, compute_t>(result) * params.inverse_cols;
mdyy_local = layer_norm::Get<1>::of<reduce_t, compute_t>(result) * params.inverse_cols;
index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c;
index_t idx_x0 = !Has_subset ? idx_x : (save_dx0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0);
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
if (Is_even_cols || (it < num_valid_ldgs)) {
Ivec dx0;
Rvec dresidual;
Ivec x0;
if (Has_colscale && save_dx0) { x0.load_from(params.x0, !Has_subset ? idx_x : idx_x0); }
#pragma unroll
for( int jt = 0; jt < NUM_ELTS; jt++ ) {
compute_t dx_tmp_res;
if (load_dz) {
compute_t dy_tmp = dy[it * NUM_ELTS + jt];
compute_t y_tmp = y[it * NUM_ELTS + jt];
compute_t dx_tmp = rs_r * (dy_tmp - (mdyy_local * y_tmp + (!params.is_rms_norm ? mdy_local : 0.f)));
dx_tmp_res = prenorm ? dx_tmp + compute_t(dx[it].data.elt[jt]) : dx_tmp;
} else {
dx_tmp_res = prenorm ? compute_t(dx[it].data.elt[jt]) : 0.f;
}
if (has_residual) { dresidual.data.elt[jt] = dx_tmp_res; }
if (save_dx0) {
compute_t dx0_tmp_res = dx_tmp_res * rowscale_val;
if (Is_dropout) {
dx0_tmp_res *= params.dropout_scale;
if (Has_colscale) {
dcolscale_sum[it].data.elt[jt] += dmask[it].data.elt[jt] ? dx0_tmp_res * compute_t(x0.data.elt[jt]) : 0.f;
dx0.data.elt[jt] = dmask[it].data.elt[jt] ? dx0_tmp_res * compute_t(colscale[it].data.elt[jt]) : 0.f;
} else {
dx0.data.elt[jt] = dmask[it].data.elt[jt] ? dx0_tmp_res : 0.f;
}
} else {
if (Has_colscale) {
dcolscale_sum[it].data.elt[jt] += dx0_tmp_res * compute_t(x0.data.elt[jt]);
dx0.data.elt[jt] = dx0_tmp_res * compute_t(colscale[it].data.elt[jt]);
} else {
dx0.data.elt[jt] = dx0_tmp_res;
}
}
}
}
if (has_residual) { dresidual.store_to(params.dresidual, idx_x); }
if (save_dx0) { dx0.store_to(params.dx0, !Has_subset ? idx_x : idx_x0); }
idx_x += Ktraits::VEC_COLS_PER_LDG;
idx_x0 += Ktraits::VEC_COLS_PER_LDG;
}
}
} // end: grid stride loop
if( WARPS_M == 1 ) {
idx = r * params.cols / Ktraits::ELTS_PER_LDG + c;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
if (Is_even_cols || (it < num_valid_ldgs)) {
dz_sum[it].store_to(params.dbeta_part, idx);
dzy_sum[it].store_to(params.dgamma_part, idx);
if (Has_colscale) { dcolscale_sum[it].store_to(params.dcolscale_part, idx); }
idx += Ktraits::VEC_COLS_PER_LDG;
}
}
} else {
static_assert(WARPS_M == 1 || Ktraits::CTAS_PER_ROW == 1, "Multiple rows per CTA not supported for Multi-CTA.");
// Finalize reduction of part dgamma and dbeta for this CTA
// by reducing over the rows held across the WARPS_M warps
// Assumption: blockSize divides hidden size.
enum { NUM_RES = COLS / Ktraits::THREADS_PER_CTA };
static_assert(NUM_RES * Ktraits::THREADS_PER_CTA == COLS, "");
idx = warp_m * Ktraits::VEC_COLS + tid_r;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
dz_sum[it].store_to(smem_wgrad, idx);
idx += THREADS_PER_ROW;
}
__syncthreads();
compute_t cta_dz_sum[NUM_RES];
memset(cta_dz_sum, 0, sizeof(compute_t) * NUM_RES);
for( int it = 0; it < ROWS_PER_CTA; it++ ) {
for( int jt = 0; jt < NUM_RES; jt++ ) {
cta_dz_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA];
}
}
__syncthreads();
idx = warp_m * Ktraits::VEC_COLS + tid_r;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
dzy_sum[it].store_to(smem_wgrad, idx);
idx += THREADS_PER_ROW;
}
__syncthreads();
compute_t cta_dzy_sum[NUM_RES];
memset(cta_dzy_sum, 0, sizeof(compute_t) * NUM_RES);
for( int it = 0; it < ROWS_PER_CTA; it++ ) {
for( int jt = 0; jt < NUM_RES; jt++ ) {
cta_dzy_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA];
}
}
compute_t cta_dcolscale_sum[NUM_RES];
if (Has_colscale) {
__syncthreads();
idx = warp_m * Ktraits::VEC_COLS + tid_r;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
dcolscale_sum[it].store_to(smem_wgrad, idx);
idx += THREADS_PER_ROW;
}
__syncthreads();
memset(cta_dcolscale_sum, 0, sizeof(compute_t) * NUM_RES);
for( int it = 0; it < ROWS_PER_CTA; it++ ) {
for( int jt = 0; jt < NUM_RES; jt++ ) {
cta_dcolscale_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA];
}
}
}
const index_t num_valid_writes
= (params.cols - 1 - tidx + Ktraits::THREADS_PER_CTA) / Ktraits::THREADS_PER_CTA;
compute_t *dgamma_part = static_cast<compute_t *>(params.dgamma_part) + bidm * params.cols + tidx;
compute_t *dbeta_part = static_cast<compute_t *>(params.dbeta_part) + bidm * params.cols + tidx;
compute_t *dcolscale_part = Has_colscale ? static_cast<compute_t *>(params.dcolscale_part) + bidm * params.cols + tidx : nullptr;
for( int jt = 0; jt < NUM_RES; jt++ ) {
if (Is_even_cols || (jt < num_valid_writes)) {
*dgamma_part = cta_dzy_sum[jt];
dgamma_part += Ktraits::THREADS_PER_CTA;
*dbeta_part = cta_dz_sum[jt];
dbeta_part += Ktraits::THREADS_PER_CTA;
if (Has_colscale) {
*dcolscale_part = cta_dcolscale_sum[jt];
dcolscale_part += Ktraits::THREADS_PER_CTA;
}
}
}
}
}
template<typename Kernel_traits, bool Has_colscale, bool Is_even_cols>
__global__ __launch_bounds__(Kernel_traits::THREADS_PER_CTA)
void ln_bwd_finalize_kernel(BwdParams params)
{
using compute_t = typename Kernel_traits::compute_t;
using weight_t = typename Kernel_traits::weight_t;
using index_t = typename Kernel_traits::index_t;
using Reducer = typename Kernel_traits::Reducer;
using reduce_t = typename Reducer::Type;
Sum<reduce_t> sum;
enum { NUM_ELT = Kernel_traits::ELTS_PER_LDG };
enum { THREADS_PER_WARP = Kernel_traits::THREADS_PER_WARP };
__shared__ char smem_[Kernel_traits::SMEM_BYTES_PER_CTA];
constexpr uint32_t bidm = 0;
const uint32_t bidn = blockIdx.x;
const uint32_t tidx = threadIdx.x;
const uint32_t warp = tidx / THREADS_PER_WARP;
const uint32_t lane = tidx % THREADS_PER_WARP;
Reducer reducer(params, bidm, bidn, 0, 0, lane, smem_);
const uint32_t c = bidn * THREADS_PER_WARP + lane;
const uint32_t c_out = bidn * THREADS_PER_WARP / 2 + lane;
constexpr uint32_t COL_STRIDE = Kernel_traits::CTAS * THREADS_PER_WARP;
for( uint32_t col = c, col_out = c_out; col < Kernel_traits::COLS; col += COL_STRIDE, col_out += COL_STRIDE / 2 ) {
// Each thread sums over NUM_ELT columns.
Vec<compute_t, NUM_ELT> dbeta_local, dgamma_local, dcolscale_local;
memset(&dgamma_local, 0, sizeof(dgamma_local));
memset(&dbeta_local, 0, sizeof(dbeta_local));
if (Has_colscale) { memset(&dcolscale_local, 0, sizeof(dcolscale_local)); }
if (Is_even_cols || col < params.cols) {
for( uint32_t row = warp; row < params.ctas_per_col; row += Kernel_traits::ROWS_PER_CTA ) {
index_t idx = row * params.cols + col;
Vec<compute_t, NUM_ELT> dbeta_part, dgamma_part, dcolscale_part;
dbeta_part.load_from(params.dbeta_part, idx);
dgamma_part.load_from(params.dgamma_part, idx);
if (Has_colscale) { dcolscale_part.load_from(params.dcolscale_part, idx); }
#pragma unroll
for( int it = 0; it < NUM_ELT; it++ ) {
dgamma_local.data.elt[it] += dgamma_part.data.elt[it];
dbeta_local.data.elt[it] += dbeta_part.data.elt[it];
if (Has_colscale) { dcolscale_local.data.elt[it] += dcolscale_part.data.elt[it]; }
}
}
}
void * smem_gamma = smem_;
void * smem_beta = &smem_[Kernel_traits::SMEM_BYTES_TRANSPOSE];
void * smem_colscale = &smem_[2 * Kernel_traits::SMEM_BYTES_TRANSPOSE];
const int write_row = warp;
const int write_col = lane ^ write_row;
const int write_idx = write_row * THREADS_PER_WARP + write_col;
dgamma_local.store_to(smem_gamma, write_idx);
dbeta_local.store_to(smem_beta, write_idx);
if (Has_colscale) { dcolscale_local.store_to(smem_colscale, write_idx); }
__syncthreads();
// It would be probably safe to reuse the first row of smem_beta and smem_gamma
void * smem_gamma_out = &smem_[Kernel_traits::NUM_FACTORS * Kernel_traits::SMEM_BYTES_TRANSPOSE];
void * smem_beta_out = &smem_[Kernel_traits::NUM_FACTORS * Kernel_traits::SMEM_BYTES_TRANSPOSE + Kernel_traits::SMEM_BYTES_OUTPUT];
void * smem_colscale_out = &smem_[Kernel_traits::NUM_FACTORS * Kernel_traits::SMEM_BYTES_TRANSPOSE + 2 * Kernel_traits::SMEM_BYTES_OUTPUT];
// More than one iter iff ROWS_PER_CTA < 32.
for( int w = warp; w < THREADS_PER_WARP; w += Kernel_traits::ROWS_PER_CTA ) {
const int read_row = lane;
const int read_col = w ^ read_row;
const int read_idx = read_row * THREADS_PER_WARP + read_col;
memset(&dbeta_local, 0, sizeof(dbeta_local));
memset(&dgamma_local, 0, sizeof(dgamma_local));
if (Has_colscale) { memset(&dcolscale_local, 0, sizeof(dcolscale_local)); }
// Load beta and gamma transposed
if(read_row < Kernel_traits::ROWS_PER_CTA){
dbeta_local.load_from(smem_beta, read_idx);
dgamma_local.load_from(smem_gamma, read_idx);
if (Has_colscale) { dcolscale_local.load_from(smem_colscale, read_idx); }
}
// Call reducer on the loaded value(s) and convert.
#pragma unroll
for( int it = 0; it < NUM_ELT; it++ ) {
compute_t b_i = dbeta_local.data.elt[it];
compute_t g_i = dgamma_local.data.elt[it];
b_i = reducer.allreduce(b_i, sum);
g_i = reducer.allreduce(g_i, sum);
dgamma_local.data.elt[it] = g_i;
dbeta_local.data.elt[it] = b_i;
if (Has_colscale) {
compute_t cs_i = dcolscale_local.data.elt[it];
cs_i = reducer.allreduce(cs_i, sum);
dcolscale_local.data.elt[it] = cs_i;
}
}
// Leader stores the result at the current column.
if(lane == 0){
dgamma_local.store_to(smem_gamma_out, w);
dbeta_local.store_to(smem_beta_out, w);
if (Has_colscale) { dcolscale_local.store_to(smem_colscale_out, w); }
}
}
// All writes done.
__syncthreads();
// Pack and store: 2-wide stores with half the threads.
if (Is_even_cols || col_out * 2 < params.cols) {
if( warp == Kernel_traits::ROWS_PER_CTA - 1 && lane < THREADS_PER_WARP / 2 ) {
using src_t = typename TypeToVec2<compute_t>::Type;
using dst_t = typename TypeToVec2<weight_t>::Type;
Vec<src_t, NUM_ELT> dbeta_vec2, dgamma_vec2, dcolscale_vec2;
Vec<dst_t, NUM_ELT> dbeta_out2, dgamma_out2, dcolscale_out2;
dgamma_vec2.load_from(smem_gamma_out, lane);
dbeta_vec2.load_from(smem_beta_out, lane);
if (Has_colscale) { dcolscale_vec2.load_from(smem_colscale_out, lane); }
#pragma unroll
for( int it = 0; it < NUM_ELT; it++ ) {
dgamma_out2.data.elt[it] = Converter<src_t,dst_t>::convert(dgamma_vec2.data.elt[it]);
dbeta_out2.data.elt[it] = Converter<src_t,dst_t>::convert(dbeta_vec2.data.elt[it]);
if (Has_colscale) { dcolscale_out2.data.elt[it] = Converter<src_t,dst_t>::convert(dcolscale_vec2.data.elt[it]); }
}
dgamma_out2.store_to(params.dgamma, col_out);
dbeta_out2.store_to(params.dbeta, col_out);
if (Has_colscale) { dcolscale_out2.store_to(params.dcolscale, col_out); }
}
}
}
}
} // namespace layer_norm
using namespace layer_norm;
template<
typename weight_t,
typename input_t,
typename residual_t,
typename output_t,
typename compute_t,
typename index_t,
int HIDDEN_SIZE,
int CTAS_PER_ROW,
int WARPS_M,
int WARPS_N,
int BYTES_PER_LDG_MAIN,
int BYTES_PER_LDG_FINAL
>
void launch_(LaunchParams<BwdParams> &launch_params, const bool configure_params){
using Kernel_traits = Kernel_traits<weight_t,
input_t,
residual_t,
output_t,
compute_t,
index_t,
HIDDEN_SIZE,
CTAS_PER_ROW,
WARPS_M,
WARPS_N,
BYTES_PER_LDG_MAIN
>;
bool is_dropout = launch_params.params.dropout_keep_p < 1.f;
bool has_colscale = launch_params.params.colscale != nullptr;
bool has_subset = launch_params.params.x0_subset != nullptr;
bool is_even_cols = launch_params.params.cols == HIDDEN_SIZE;
BOOL_SWITCH(is_dropout, IsDropoutConst, [&] {
BOOL_SWITCH(has_colscale, HasColscaleConst, [&] {
BOOL_SWITCH(has_subset, HasSubsetConst, [&] {
BOOL_SWITCH(is_even_cols, IsEvenColsConst, [&] {
auto kernel = &ln_bwd_kernel<Kernel_traits, IsDropoutConst, HasColscaleConst, HasSubsetConst, IsEvenColsConst>;
if( configure_params ) {
int ctas_per_sm;
CHECK_CUDA(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
&ctas_per_sm, kernel, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES));
launch_params.params.ctas_per_col = launch_params.props->multiProcessorCount * ctas_per_sm / Kernel_traits::CTAS_PER_ROW;
launch_params.barrier_size = 0;
launch_params.workspace_bytes = 0;
if(Kernel_traits::CTAS_PER_ROW > 1) {
launch_params.barrier_size = 2 * launch_params.params.ctas_per_col;
launch_params.workspace_bytes = launch_params.params.ctas_per_col
* Kernel_traits::WARPS_M
* Kernel_traits::CTAS_PER_ROW
* sizeof(typename Kernel_traits::reduce_t)
* 2;
}
return;
}
if( Kernel_traits::SMEM_BYTES >= 48 * 1024 ) {
CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::SMEM_BYTES));
}
auto stream = launch_params.stream;
auto ctas_per_col = launch_params.params.ctas_per_col;
if( Kernel_traits::CTAS_PER_ROW == 1 ) {
kernel<<<ctas_per_col, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES, stream>>>(launch_params.params);
} else {
dim3 grid(Kernel_traits::CTAS_PER_ROW * ctas_per_col);
dim3 block(Kernel_traits::THREADS_PER_CTA);
void *params_ = (void *)&launch_params.params;
cudaLaunchCooperativeKernel((void *)kernel, grid, block, (void **)&params_, Kernel_traits::SMEM_BYTES, stream);
}
using Kernel_traits_f = layer_norm::Kernel_traits_finalize<HIDDEN_SIZE,
weight_t,
input_t,
residual_t,
output_t,
compute_t,
index_t,
HasColscaleConst,
32 * 32, // THREADS_PER_CTA
BYTES_PER_LDG_FINAL>;
auto kernel_f = &layer_norm::ln_bwd_finalize_kernel<Kernel_traits_f, HasColscaleConst, IsEvenColsConst>;
kernel_f<<<Kernel_traits_f::CTAS, Kernel_traits_f::THREADS_PER_CTA, 0, stream>>>(launch_params.params);
});
});
});
});
}