Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
# Adapted from https://github.com/facebookresearch/xformers/blob/main/xformers/triton/k_activations.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import math
from enum import Enum
from typing import Optional
import triton
import triton.language as tl
_sqrt2pi = math.sqrt(2.0 / math.pi)
_sqrt1_2 = math.sqrt(1.0 / 2)
_gaussian_pdf_normalization = 1.0 / math.sqrt(2 * math.pi)
class Activation(str, Enum):
SquaredReLU = "squared_relu"
GeLU = "gelu"
GeLUApprox = "gelu_approx"
LeakyReLU = "leaky_relu"
ReLU = "relu"
def get_triton_activation_kernel(activation: Optional[Activation]):
return (
{
Activation.ReLU: relu,
Activation.LeakyReLU: leaky_relu,
Activation.GeLU: gelu,
Activation.GeLUApprox: gelu_approx,
Activation.SquaredReLU: squared_relu,
}[activation]
if activation
else None
)
def get_triton_activation_bwd_kernel(activation: Optional[Activation]):
return (
{
Activation.ReLU: relu_grad,
Activation.LeakyReLU: leaky_relu_grad,
Activation.GeLU: gelu_grad,
Activation.GeLUApprox: gelu_approx_grad,
Activation.SquaredReLU: squared_relu_grad,
}[activation]
if activation
else None
)
@triton.jit
def tanh(x):
# Tanh is just a scaled sigmoid
return 2 * tl.sigmoid(2 * x) - 1
@triton.jit
def cosh(x):
exp_x = tl.exp(x)
return (exp_x + 1.0 / exp_x) * 0.5
# a Triton implementation of the most used activations
# See for instance http://arxiv.org/abs/1606.08415 for an overview
# ReLU
@triton.jit
def relu(x):
"""
ReLU_ activation function
.. _ReLU: https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
"""
zero = 0.0
return tl.where(x >= 0, x, zero.to(x.dtype))
@triton.jit
def relu_grad(x):
# ReLU is different from other activations
# in that it does not require the input to retrospectively compute its gradient
# here the input is the downstream gradient, and we return the upstream gradient directly
zero = 0.0
one = 1.0
return tl.where(x >= 0, one.to(x.dtype), zero.to(x.dtype))
@triton.jit
def squared_relu(x):
"""
Squared ReLU activation, as proposed in the Primer_ paper.
.. _Primer: https://arxiv.org/abs/2109.08668
"""
x_ = relu(x)
return (x_ * x_).to(x.dtype)
@triton.jit
def squared_relu_grad(x):
return tl.where(x >= 0, 2.0 * x, 0.0)
# Leaky ReLU
@triton.jit
def leaky_relu(x):
"""
LeakyReLU_ activation
.. _LeakyReLU: https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
"""
scale = 0.01 + 0.0
scale = scale.to(x.dtype)
return tl.where(x >= 0, x, scale * x)
@triton.jit
def leaky_relu_grad(x):
min_grad = 0.01
max_grad = 1
min_grad = min_grad.to(x.dtype)
max_grad = max_grad.to(x.dtype)
return tl.where(x >= 0, max_grad, min_grad)
@triton.jit
def gelu(x):
"""Gaussian Error Linear Unit (GELU)"""
return x * 0.5 * (1.0 + tl.libdevice.erf(x * _sqrt1_2))
@triton.jit
def gelu_grad(x):
cdf = 0.5 * (1.0 + tl.libdevice.erf(x * _sqrt1_2))
pdf = tl.exp(-0.5 * x * x) * _gaussian_pdf_normalization
return cdf + x * pdf
@triton.jit
def gelu_approx(x):
"""
GeLU_ activation - Gaussian error linear unit, with tanh approximation
.. _GeLU: https://arxiv.org/pdf/1606.08415.pdf
"""
return 0.5 * x * (1.0 + tanh(_sqrt2pi * x * (1.0 + 0.044715 * x * x)))
@triton.jit
def gelu_approx_grad(x):
# CREDITS: Fast implementation proposed in
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/fused_bias_gelu.py#L30
tanh_out = tanh(0.79788456 * x * (1 + 0.044715 * x * x))
return 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (
1 + tanh_out
)