Spaces:
Sleeping
Sleeping
# Copyright (c) 2023, Tri Dao. | |
from typing import Optional, Union | |
import torch | |
import triton | |
import triton.language as tl | |
def rotary_kernel( | |
OUT, # Pointers to matrices | |
X, | |
COS, | |
SIN, | |
CU_SEQLENS, | |
SEQLEN_OFFSETS, # this could be int or a pointer | |
# Matrix dimensions | |
seqlen, | |
rotary_dim, | |
seqlen_ro, | |
# strides | |
stride_out_batch, | |
stride_out_seqlen, | |
stride_out_nheads, | |
stride_out_headdim, | |
stride_x_batch, | |
stride_x_seqlen, | |
stride_x_nheads, | |
stride_x_headdim, | |
# Meta-parameters | |
BLOCK_K: tl.constexpr, | |
IS_SEQLEN_OFFSETS_TENSOR: tl.constexpr, | |
IS_VARLEN: tl.constexpr, | |
INTERLEAVED: tl.constexpr, | |
CONJUGATE: tl.constexpr, | |
BLOCK_M: tl.constexpr, | |
): | |
pid_m = tl.program_id(axis=0) | |
pid_batch = tl.program_id(axis=1) | |
pid_head = tl.program_id(axis=2) | |
rotary_dim_half = rotary_dim // 2 | |
if not IS_VARLEN: | |
X = X + pid_batch * stride_x_batch + pid_head * stride_x_nheads | |
OUT = OUT + pid_batch * stride_out_batch + pid_head * stride_out_nheads | |
else: | |
start_idx = tl.load(CU_SEQLENS + pid_batch) | |
seqlen = tl.load(CU_SEQLENS + pid_batch + 1) - start_idx | |
X = X + start_idx * stride_x_seqlen + pid_head * stride_x_nheads | |
OUT = OUT + start_idx * stride_out_seqlen + pid_head * stride_out_nheads | |
if pid_m * BLOCK_M >= seqlen: | |
return | |
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) | |
if not IS_SEQLEN_OFFSETS_TENSOR: | |
rm_cs = rm + SEQLEN_OFFSETS | |
else: | |
rm_cs = rm + tl.load(SEQLEN_OFFSETS + pid_batch) | |
rk = tl.arange(0, BLOCK_K) | |
rk_half = tl.arange(0, BLOCK_K // 2) | |
if not INTERLEAVED: | |
# Load the 1st and 2nd halves of X, do calculation, then store to 1st and 2nd halves of OUT | |
X = X + (rm[:, None] * stride_x_seqlen + rk_half[None, :] * stride_x_headdim) | |
COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :]) | |
SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :]) | |
cos = tl.load( | |
COS, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=1.0 | |
).to(tl.float32) | |
sin = tl.load( | |
SIN, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=0.0 | |
).to(tl.float32) | |
x0 = tl.load( | |
X, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half), other=0.0 | |
).to(tl.float32) | |
x1 = tl.load( | |
X + rotary_dim_half * stride_x_headdim, | |
mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half), | |
other=0.0, | |
).to(tl.float32) | |
if CONJUGATE: | |
sin = -sin | |
o0 = x0 * cos - x1 * sin | |
o1 = x0 * sin + x1 * cos | |
# write back result | |
OUT = OUT + (rm[:, None] * stride_out_seqlen + rk_half[None, :] * stride_out_headdim) | |
tl.store(OUT, o0, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half)) | |
tl.store( | |
OUT + rotary_dim_half * stride_out_headdim, | |
o1, | |
mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half), | |
) | |
else: | |
# We don't want to load X[0, 2, 4, ...] and X[1, 3, 5, ...] separately since both are slow. | |
# Instead, we load x0 = X[0, 1, 2, 3, ...] and x1 = X[1, 0, 3, 2, ...]. | |
# Loading x0 will be fast but x1 will be slow. | |
# Then we load cos = COS[0, 0, 1, 1, ...] and sin = SIN[0, 0, 1, 1, ...]. | |
# Then we do the calculation and use tl.where to pick put the right outputs for the even | |
# and for the odd indices. | |
rk_swap = rk + ((rk + 1) % 2) * 2 - 1 # 1, 0, 3, 2, 5, 4, ... | |
rk_repeat = tl.arange(0, BLOCK_K) // 2 | |
X0 = X + (rm[:, None] * stride_x_seqlen + rk[None, :] * stride_x_headdim) | |
X1 = X + (rm[:, None] * stride_x_seqlen + rk_swap[None, :] * stride_x_headdim) | |
COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :]) | |
SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :]) | |
cos = tl.load( | |
COS, | |
mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half), | |
other=1.0, | |
).to(tl.float32) | |
sin = tl.load( | |
SIN, | |
mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half), | |
other=0.0, | |
).to(tl.float32) | |
x0 = tl.load(X0, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim), other=0.0).to( | |
tl.float32 | |
) | |
x1 = tl.load( | |
X1, mask=(rm[:, None] < seqlen) & (rk_swap[None, :] < rotary_dim), other=0.0 | |
).to(tl.float32) | |
if CONJUGATE: | |
sin = -sin | |
x0_cos = x0 * cos | |
x1_sin = x1 * sin | |
out = tl.where(rk[None, :] % 2 == 0, x0_cos - x1_sin, x0_cos + x1_sin) | |
OUT = OUT + (rm[:, None] * stride_out_seqlen + rk[None, :] * stride_out_headdim) | |
tl.store(OUT, out, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim)) | |
def apply_rotary( | |
x: torch.Tensor, | |
cos: torch.Tensor, | |
sin: torch.Tensor, | |
seqlen_offsets: Union[int, torch.Tensor] = 0, | |
cu_seqlens: Optional[torch.Tensor] = None, | |
max_seqlen: Optional[int] = None, | |
interleaved=False, | |
inplace=False, | |
conjugate=False, | |
) -> torch.Tensor: | |
""" | |
Arguments: | |
x: (batch, seqlen, nheads, headdim) if cu_seqlens is None | |
else (total_seqlen, nheads, headdim). | |
cos: (seqlen_ro, rotary_dim / 2) | |
sin: (seqlen_ro, rotary_dim / 2) | |
seqlen_offsets: integer or integer tensor of size (batch,) | |
cu_seqlens: (batch + 1,) or None | |
max_seqlen: int | |
Returns: | |
y: (batch, seqlen, nheads, headdim) | |
""" | |
is_varlen = cu_seqlens is not None | |
if not is_varlen: | |
batch, seqlen, nheads, headdim = x.shape | |
else: | |
assert max_seqlen is not None, "If cu_seqlens is passed in, then max_seqlen must be passed" | |
total_seqlen, nheads, headdim = x.shape | |
batch_p_1 = cu_seqlens.shape[0] | |
batch = batch_p_1 - 1 | |
seqlen = max_seqlen | |
seqlen_ro, rotary_dim = cos.shape | |
assert sin.shape == cos.shape | |
rotary_dim *= 2 | |
assert rotary_dim <= headdim, "rotary_dim must be <= headdim" | |
assert headdim <= 256, "Only support headdim <= 256" | |
assert seqlen_ro >= seqlen, "seqlen_ro must be >= seqlen" | |
assert ( | |
cos.dtype == sin.dtype | |
), f"cos and sin must have the same dtype, got {cos.dtype} and {sin.dtype}" | |
assert ( | |
x.dtype == cos.dtype | |
), f"Input and cos/sin must have the same dtype, got {x.dtype} and {cos.dtype}" | |
cos, sin = cos.contiguous(), sin.contiguous() | |
if isinstance(seqlen_offsets, torch.Tensor): | |
assert seqlen_offsets.shape == (batch,) | |
assert seqlen_offsets.dtype in [torch.int32, torch.int64] | |
seqlen_offsets = seqlen_offsets.contiguous() | |
else: | |
assert seqlen_offsets + seqlen <= seqlen_ro | |
output = torch.empty_like(x) if not inplace else x | |
if rotary_dim < headdim and not inplace: | |
output[..., rotary_dim:].copy_(x[..., rotary_dim:]) | |
BLOCK_K = ( | |
32 | |
if rotary_dim <= 32 | |
else (64 if rotary_dim <= 64 else (128 if rotary_dim <= 128 else 256)) | |
) | |
grid = lambda META: (triton.cdiv(seqlen, META["BLOCK_M"]), batch, nheads) # noqa | |
BLOCK_M = 4 if interleaved else (8 if rotary_dim <= 64 else 4) | |
# Need this, otherwise Triton tries to launch from cuda:0 and we get | |
# ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?) | |
with torch.cuda.device(x.device.index): | |
rotary_kernel[grid]( | |
output, # data ptrs | |
x, | |
cos, | |
sin, | |
cu_seqlens, | |
seqlen_offsets, | |
seqlen, # shapes | |
rotary_dim, | |
seqlen_ro, | |
output.stride(0) if not is_varlen else 0, # batch_strides if not varlen else 0 | |
output.stride(-3), # seqlen_stride or total_seqlen_stride | |
output.stride(-2), # nheads_stride | |
output.stride(-1), # headdim_stride | |
x.stride(0) if not is_varlen else 0, # batch_strides if not varlen else 0 | |
x.stride(-3), # seqlen stride or total_seqlen_stride | |
x.stride(-2), # nheads stride | |
x.stride(-1), # headdim stride | |
BLOCK_K, | |
isinstance(seqlen_offsets, torch.Tensor), | |
is_varlen, | |
interleaved, | |
conjugate, | |
BLOCK_M, | |
) | |
return output | |