Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
# Copyright (c) 2023, Tri Dao.
import math
import pytest
import torch
import torch.nn.functional as F
from einops import rearrange
from flash_attn.layers.rotary import RotaryEmbedding, apply_rotary_emb_func, apply_rotary_emb_qkv_
from transformers.models.gpt_neox.modeling_gpt_neox import RotaryEmbedding as RotaryEmbeddingNeoX
from transformers.models.gpt_neox.modeling_gpt_neox import (
apply_rotary_pos_emb as apply_rotary_pos_emb_neox,
)
from transformers.models.gptj.modeling_gptj import apply_rotary_pos_emb as apply_rotary_pos_emb_gptj
from transformers.models.gptj.modeling_gptj import fixed_pos_embedding
# NeoX-style rotary embedding
@pytest.mark.parametrize("seqlen_offset", [0, 711])
@pytest.mark.parametrize("rotary_emb_fraction", [0.5, 1.0])
def test_rotary(rotary_emb_fraction, seqlen_offset):
device = "cuda"
dtype = torch.float16
rtol, atol = (1e-3, 5e-3)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen_total = 2048
seqlen = seqlen_total - seqlen_offset
nheads = 16
headdim = 128
rotary_dim = int(headdim * rotary_emb_fraction)
qkv = torch.randn(
batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, requires_grad=True
)
qkv_og = qkv.clone().detach() # Our implementation modifies qkv inplace
rotary = RotaryEmbedding(rotary_dim, device=device)
rotary_neox = RotaryEmbeddingNeoX(rotary_dim, seqlen_total, device=device)
# Doesn't matter what tensor we pass in, rotary_neox only uses the device of the tensor
cos_neox, sin_neox = rotary_neox(qkv, seq_len=seqlen_total)
cos_neox, sin_neox = cos_neox.to(dtype=dtype), sin_neox.to(dtype=dtype)
q_pt = (
rearrange(qkv[:, :, 0, :, :rotary_dim], "b s h d -> b h s d")
.detach()
.clone()
.requires_grad_(True)
)
k_pt = (
rearrange(qkv[:, :, 1, :, :rotary_dim], "b s h d -> b h s d")
.detach()
.clone()
.requires_grad_(True)
)
q_neox, k_neox = apply_rotary_pos_emb_neox(q_pt, k_pt, cos_neox, sin_neox, offset=seqlen_offset)
out = rotary(qkv, seqlen_offset=seqlen_offset)
assert torch.allclose(
rotary._cos_cached, cos_neox[..., : rotary_dim // 2].to(dtype=dtype), rtol=rtol, atol=atol
)
assert torch.allclose(
rotary._sin_cached, sin_neox[..., : rotary_dim // 2].to(dtype=dtype), rtol=rtol, atol=atol
)
assert torch.allclose(
rearrange(q_neox, "b h s d -> b s h d"), out[:, :, 0, :, :rotary_dim], rtol=rtol, atol=atol
)
assert torch.allclose(
rearrange(k_neox, "b h s d -> b s h d"), out[:, :, 1, :, :rotary_dim], rtol=rtol, atol=atol
)
assert torch.equal(out[:, :, 0:2, :, rotary_dim:], qkv_og[:, :, 0:2, :, rotary_dim:])
assert torch.equal(out[:, :, 2], qkv_og[:, :, 2])
g = torch.randn_like(out)
g_og = g.clone().detach() # Our implementation modifies g inplace
out.backward(g)
q_neox.backward(rearrange(g_og[:, :, 0, :, :rotary_dim], "b s h d -> b h s d"))
k_neox.backward(rearrange(g_og[:, :, 1, :, :rotary_dim], "b s h d -> b h s d"))
assert torch.allclose(
rearrange(q_pt.grad, "b h s d -> b s h d"),
qkv.grad[:, :, 0, :, :rotary_dim],
rtol=rtol,
atol=atol,
)
assert torch.allclose(
rearrange(k_pt.grad, "b h s d -> b s h d"),
qkv.grad[:, :, 1, :, :rotary_dim],
rtol=rtol,
atol=atol,
)
assert torch.equal(qkv.grad[:, :, 0:2, :, rotary_dim:], g_og[:, :, 0:2, :, rotary_dim:])
assert torch.equal(qkv.grad[:, :, 2], g_og[:, :, 2])
# GPT-J-style rotary embedding
@pytest.mark.parametrize("seqlen_offset", [0, 711])
@pytest.mark.parametrize("rotary_emb_fraction", [0.5, 1.0])
def test_rotary_interleaved(rotary_emb_fraction, seqlen_offset):
device = "cuda"
dtype = torch.float16
rtol, atol = (1e-3, 5e-3)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen_total = 2048
seqlen = seqlen_total - seqlen_offset
nheads = 16
headdim = 128
rotary_dim = int(headdim * rotary_emb_fraction)
qkv = torch.randn(
batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, requires_grad=True
)
qkv_og = qkv.clone().detach() # Our implementation modifies qkv inplace
rotary = RotaryEmbedding(rotary_dim, interleaved=True, device=device)
sincos_gptj = fixed_pos_embedding(qkv[..., :rotary_dim], seq_dim=1, seq_len=seqlen_total)
sincos_gptj = tuple(x.to(dtype=dtype) for x in sincos_gptj)
q_pt = qkv[:, :, 0, :, :rotary_dim].detach().clone().requires_grad_(True)
k_pt = qkv[:, :, 1, :, :rotary_dim].detach().clone().requires_grad_(True)
q_gptj = apply_rotary_pos_emb_gptj(q_pt, sincos_gptj, offset=seqlen_offset)
k_gptj = apply_rotary_pos_emb_gptj(k_pt, sincos_gptj, offset=seqlen_offset)
out = rotary(qkv, seqlen_offset=seqlen_offset)
assert torch.allclose(rotary._cos_cached, sincos_gptj[1], rtol=rtol, atol=atol)
assert torch.allclose(rotary._sin_cached, sincos_gptj[0], rtol=rtol, atol=atol)
assert torch.allclose(q_gptj, out[:, :, 0, :, :rotary_dim], rtol=rtol, atol=atol)
assert torch.allclose(k_gptj, out[:, :, 1, :, :rotary_dim], rtol=rtol, atol=atol)
assert torch.equal(out[:, :, 0:2, :, rotary_dim:], qkv_og[:, :, 0:2, :, rotary_dim:])
assert torch.equal(out[:, :, 2], qkv_og[:, :, 2])
g = torch.randn_like(out)
g_og = g.clone().detach() # Our implementation modifies g inplace
out.backward(g)
q_gptj.backward(g_og[:, :, 0, :, :rotary_dim])
k_gptj.backward(g_og[:, :, 1, :, :rotary_dim])
assert torch.allclose(q_pt.grad, qkv.grad[:, :, 0, :, :rotary_dim], rtol=rtol, atol=atol)
assert torch.allclose(k_pt.grad, qkv.grad[:, :, 1, :, :rotary_dim], rtol=rtol, atol=atol)
assert torch.equal(qkv.grad[:, :, 0:2, :, rotary_dim:], g_og[:, :, 0:2, :, rotary_dim:])
assert torch.equal(qkv.grad[:, :, 2], g_og[:, :, 2])