Spaces:
Sleeping
Sleeping
# Copyright (c) 2023, Tri Dao. | |
import math | |
import pytest | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange | |
from flash_attn.layers.rotary import RotaryEmbedding, apply_rotary_emb_func, apply_rotary_emb_qkv_ | |
from transformers.models.gpt_neox.modeling_gpt_neox import RotaryEmbedding as RotaryEmbeddingNeoX | |
from transformers.models.gpt_neox.modeling_gpt_neox import ( | |
apply_rotary_pos_emb as apply_rotary_pos_emb_neox, | |
) | |
from transformers.models.gptj.modeling_gptj import apply_rotary_pos_emb as apply_rotary_pos_emb_gptj | |
from transformers.models.gptj.modeling_gptj import fixed_pos_embedding | |
# NeoX-style rotary embedding | |
def test_rotary(rotary_emb_fraction, seqlen_offset): | |
device = "cuda" | |
dtype = torch.float16 | |
rtol, atol = (1e-3, 5e-3) | |
# set seed | |
torch.random.manual_seed(0) | |
batch_size = 8 | |
seqlen_total = 2048 | |
seqlen = seqlen_total - seqlen_offset | |
nheads = 16 | |
headdim = 128 | |
rotary_dim = int(headdim * rotary_emb_fraction) | |
qkv = torch.randn( | |
batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, requires_grad=True | |
) | |
qkv_og = qkv.clone().detach() # Our implementation modifies qkv inplace | |
rotary = RotaryEmbedding(rotary_dim, device=device) | |
rotary_neox = RotaryEmbeddingNeoX(rotary_dim, seqlen_total, device=device) | |
# Doesn't matter what tensor we pass in, rotary_neox only uses the device of the tensor | |
cos_neox, sin_neox = rotary_neox(qkv, seq_len=seqlen_total) | |
cos_neox, sin_neox = cos_neox.to(dtype=dtype), sin_neox.to(dtype=dtype) | |
q_pt = ( | |
rearrange(qkv[:, :, 0, :, :rotary_dim], "b s h d -> b h s d") | |
.detach() | |
.clone() | |
.requires_grad_(True) | |
) | |
k_pt = ( | |
rearrange(qkv[:, :, 1, :, :rotary_dim], "b s h d -> b h s d") | |
.detach() | |
.clone() | |
.requires_grad_(True) | |
) | |
q_neox, k_neox = apply_rotary_pos_emb_neox(q_pt, k_pt, cos_neox, sin_neox, offset=seqlen_offset) | |
out = rotary(qkv, seqlen_offset=seqlen_offset) | |
assert torch.allclose( | |
rotary._cos_cached, cos_neox[..., : rotary_dim // 2].to(dtype=dtype), rtol=rtol, atol=atol | |
) | |
assert torch.allclose( | |
rotary._sin_cached, sin_neox[..., : rotary_dim // 2].to(dtype=dtype), rtol=rtol, atol=atol | |
) | |
assert torch.allclose( | |
rearrange(q_neox, "b h s d -> b s h d"), out[:, :, 0, :, :rotary_dim], rtol=rtol, atol=atol | |
) | |
assert torch.allclose( | |
rearrange(k_neox, "b h s d -> b s h d"), out[:, :, 1, :, :rotary_dim], rtol=rtol, atol=atol | |
) | |
assert torch.equal(out[:, :, 0:2, :, rotary_dim:], qkv_og[:, :, 0:2, :, rotary_dim:]) | |
assert torch.equal(out[:, :, 2], qkv_og[:, :, 2]) | |
g = torch.randn_like(out) | |
g_og = g.clone().detach() # Our implementation modifies g inplace | |
out.backward(g) | |
q_neox.backward(rearrange(g_og[:, :, 0, :, :rotary_dim], "b s h d -> b h s d")) | |
k_neox.backward(rearrange(g_og[:, :, 1, :, :rotary_dim], "b s h d -> b h s d")) | |
assert torch.allclose( | |
rearrange(q_pt.grad, "b h s d -> b s h d"), | |
qkv.grad[:, :, 0, :, :rotary_dim], | |
rtol=rtol, | |
atol=atol, | |
) | |
assert torch.allclose( | |
rearrange(k_pt.grad, "b h s d -> b s h d"), | |
qkv.grad[:, :, 1, :, :rotary_dim], | |
rtol=rtol, | |
atol=atol, | |
) | |
assert torch.equal(qkv.grad[:, :, 0:2, :, rotary_dim:], g_og[:, :, 0:2, :, rotary_dim:]) | |
assert torch.equal(qkv.grad[:, :, 2], g_og[:, :, 2]) | |
# GPT-J-style rotary embedding | |
def test_rotary_interleaved(rotary_emb_fraction, seqlen_offset): | |
device = "cuda" | |
dtype = torch.float16 | |
rtol, atol = (1e-3, 5e-3) | |
# set seed | |
torch.random.manual_seed(0) | |
batch_size = 8 | |
seqlen_total = 2048 | |
seqlen = seqlen_total - seqlen_offset | |
nheads = 16 | |
headdim = 128 | |
rotary_dim = int(headdim * rotary_emb_fraction) | |
qkv = torch.randn( | |
batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, requires_grad=True | |
) | |
qkv_og = qkv.clone().detach() # Our implementation modifies qkv inplace | |
rotary = RotaryEmbedding(rotary_dim, interleaved=True, device=device) | |
sincos_gptj = fixed_pos_embedding(qkv[..., :rotary_dim], seq_dim=1, seq_len=seqlen_total) | |
sincos_gptj = tuple(x.to(dtype=dtype) for x in sincos_gptj) | |
q_pt = qkv[:, :, 0, :, :rotary_dim].detach().clone().requires_grad_(True) | |
k_pt = qkv[:, :, 1, :, :rotary_dim].detach().clone().requires_grad_(True) | |
q_gptj = apply_rotary_pos_emb_gptj(q_pt, sincos_gptj, offset=seqlen_offset) | |
k_gptj = apply_rotary_pos_emb_gptj(k_pt, sincos_gptj, offset=seqlen_offset) | |
out = rotary(qkv, seqlen_offset=seqlen_offset) | |
assert torch.allclose(rotary._cos_cached, sincos_gptj[1], rtol=rtol, atol=atol) | |
assert torch.allclose(rotary._sin_cached, sincos_gptj[0], rtol=rtol, atol=atol) | |
assert torch.allclose(q_gptj, out[:, :, 0, :, :rotary_dim], rtol=rtol, atol=atol) | |
assert torch.allclose(k_gptj, out[:, :, 1, :, :rotary_dim], rtol=rtol, atol=atol) | |
assert torch.equal(out[:, :, 0:2, :, rotary_dim:], qkv_og[:, :, 0:2, :, rotary_dim:]) | |
assert torch.equal(out[:, :, 2], qkv_og[:, :, 2]) | |
g = torch.randn_like(out) | |
g_og = g.clone().detach() # Our implementation modifies g inplace | |
out.backward(g) | |
q_gptj.backward(g_og[:, :, 0, :, :rotary_dim]) | |
k_gptj.backward(g_og[:, :, 1, :, :rotary_dim]) | |
assert torch.allclose(q_pt.grad, qkv.grad[:, :, 0, :, :rotary_dim], rtol=rtol, atol=atol) | |
assert torch.allclose(k_pt.grad, qkv.grad[:, :, 1, :, :rotary_dim], rtol=rtol, atol=atol) | |
assert torch.equal(qkv.grad[:, :, 0:2, :, rotary_dim:], g_og[:, :, 0:2, :, rotary_dim:]) | |
assert torch.equal(qkv.grad[:, :, 2], g_og[:, :, 2]) | |