Spaces:
Sleeping
Sleeping
import math | |
import pytest | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange | |
from flash_attn.losses.cross_entropy import CrossEntropyLoss | |
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8 | |
# @pytest.mark.parametrize("dtype", [torch.float16]) | |
# @pytest.mark.parametrize("inplace_backward", [False]) | |
# @pytest.mark.parametrize("lse_square_scale", [1e-2]) | |
# @pytest.mark.parametrize("logit_scale", [1.0]) | |
# @pytest.mark.parametrize("smoothing", [0.0]) | |
# test vocab larger than 64k for split | |
# @pytest.mark.parametrize("vocab_size", [12]) | |
def test_cross_entropy_loss( | |
vocab_size, smoothing, logit_scale, lse_square_scale, return_z_loss, inplace_backward, dtype | |
): | |
device = "cuda" | |
rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4) | |
# set seed | |
torch.random.manual_seed(0) | |
batch_size = 1 if dtype == torch.float32 else 4 # Otherwise OOM | |
seqlen = 4096 if lse_square_scale == 0.0 and logit_scale == 1.0 else 1024 # Otherwise OOM | |
x_pt = torch.randn( | |
batch_size * seqlen, vocab_size, device=device, dtype=dtype, requires_grad=True | |
) | |
x = x_pt.detach().clone().requires_grad_() | |
y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device) | |
if batch_size * seqlen > 10: | |
y[torch.randperm(batch_size * seqlen)[:10]] = -100 | |
model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing) | |
model = CrossEntropyLoss( | |
label_smoothing=smoothing, | |
logit_scale=logit_scale, | |
lse_square_scale=lse_square_scale, | |
return_z_loss=return_z_loss, | |
inplace_backward=inplace_backward, | |
) | |
if return_z_loss: | |
out, out_z_loss = model(x, y) | |
else: | |
out = model(x, y) | |
x_pt_scaled = (x_pt.float() * logit_scale) if logit_scale != 1.0 else x_pt.float() | |
out_pt = model_pt(x_pt_scaled, y) | |
if lse_square_scale > 0.0: | |
lse_pt = torch.logsumexp(x_pt_scaled, dim=-1) | |
z_loss_pt = lse_square_scale * (lse_pt[y != -100] ** 2).mean() | |
if return_z_loss: | |
assert torch.allclose(out_z_loss, z_loss_pt, rtol=rtol, atol=atol) | |
out_pt += z_loss_pt | |
assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-6) | |
g = torch.randn_like(out) | |
out_pt.backward(g) | |
out.backward(g) | |
assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol) | |