Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
# Copyright (c) 2023, Tri Dao.
import os
import time
from pathlib import Path
import torch
import pytest
from einops import rearrange
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
from flash_attn.models.gpt import (
GPTLMHeadModel,
combine_state_dicts_tp,
shard_state_dict_tp,
)
from flash_attn.models.baichuan import (
remap_state_dict_hf_baichuan,
baichuan_config_to_gpt2_config,
)
from flash_attn.utils.distributed import all_gather_raw
from flash_attn.utils.pretrained import state_dict_from_pretrained
from flash_attn.utils.generation import update_graph_cache
@pytest.mark.parametrize(
"model_name",
[
"baichuan-inc/Baichuan-7B",
"baichuan-inc/Baichuan-13B-Base",
"baichuan-inc/Baichuan2-7B-Base",
"baichuan-inc/Baichuan2-13B-Base",
],
)
def test_baichuan_state_dict(model_name):
config = baichuan_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
pretrained_state_dict = remap_state_dict_hf_baichuan(
state_dict_from_pretrained(model_name), config
)
model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow
state_dict = model.state_dict()
assert len(state_dict.keys()) == len(pretrained_state_dict.keys())
assert state_dict.keys() == pretrained_state_dict.keys()
for k in state_dict.keys():
assert state_dict[k].shape == pretrained_state_dict[k].shape
@pytest.mark.parametrize(
"model_name",
[
"baichuan-inc/Baichuan-7B",
"baichuan-inc/Baichuan-13B-Base",
"baichuan-inc/Baichuan2-7B-Base",
"baichuan-inc/Baichuan2-13B-Base",
],
)
def test_baichuan_optimized(model_name):
"""Check that our implementation of Baichuan (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
device = "cuda"
config = baichuan_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
pretrained_state_dict = remap_state_dict_hf_baichuan(
state_dict_from_pretrained(model_name), config
)
model = GPTLMHeadModel(config, device=device, dtype=dtype)
model.load_state_dict(pretrained_state_dict)
model.eval()
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
)
with torch.no_grad():
out = model.transformer(input_ids)
logits = model(input_ids).logits
del model
# Without device_map, the model is loaded on the CPU, which is very slow
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
model_ref = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", trust_remote_code=True
)
model_ref.eval()
with torch.no_grad():
out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
logits_ref = model_ref(input_ids).logits.to(device=device)
del model_ref
model_hf = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=dtype,
device_map={"": device},
trust_remote_code=True,
)
model_hf.eval()
with torch.no_grad():
out_hf = model_hf.model(input_ids).last_hidden_state
logits_hf = model_hf(input_ids).logits
del model_hf
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 3 * (
logits_hf - logits_ref
).abs().max().item()
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_baichuan.py -k "test_baichuan_parallel_forward"
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize(
"model_name",
[
"baichuan-inc/Baichuan-7B",
"baichuan-inc/Baichuan-13B-Base",
"baichuan-inc/Baichuan2-7B-Base",
"baichuan-inc/Baichuan2-13B-Base",
],
)
def test_baichuan_parallel_forward(model_name, world_size):
"""Check that our implementation of Baichuan (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
from apex.transformer import parallel_state
dtype = torch.float16
config = baichuan_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
process_group = parallel_state.get_tensor_model_parallel_group()
pretrained_state_dict = remap_state_dict_hf_baichuan(
state_dict_from_pretrained(model_name), config
)
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
model.eval()
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
)
with torch.no_grad():
out = model.transformer(input_ids)
out, _ = all_gather_raw(out, process_group=process_group)
out = rearrange(out, "(b s) d -> b s d", b=batch_size)
logits = model(input_ids).logits
logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
logits, _ = all_gather_raw(logits, process_group)
logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)
del model
parallel_state.destroy_model_parallel()
if rank == 0:
# Without device_map, the model is loaded on the CPU, which is very slow
model_ref = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", trust_remote_code=True
)
model_ref.eval()
with torch.no_grad():
out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
logits_ref = model_ref(input_ids).logits.to(device=device)
del model_ref
model_hf = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True
)
model_hf.eval()
with torch.no_grad():
out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
logits_hf = model_hf(input_ids).logits.to(device=device)
del model_hf
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 2 * (
logits_hf - logits_ref
).abs().max().item()
@pytest.mark.parametrize(
"model_name", ["baichuan-inc/Baichuan-7B", "baichuan-inc/Baichuan-13B-Base"]
)
def test_baichuan_generation(model_name):
dtype = torch.float16
device = "cuda"
config = baichuan_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
eos_token_id = tokenizer.eos_token_id
torch.manual_seed(0)
batch_size = 1
seqlen = 2048
max_length = 2048 + 150
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
model_hf = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True
)
model_hf.eval()
print("HF fp16")
torch.cuda.synchronize()
start = time.time()
out_hf = model_hf.generate(
input_ids=input_ids,
max_length=max_length,
return_dict_in_generate=True,
output_scores=True,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
del model_hf
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
model_ref = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", trust_remote_code=True
)
model_ref.eval()
with torch.no_grad():
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1].to(device=device)
del model_ref
pretrained_state_dict = remap_state_dict_hf_baichuan(
state_dict_from_pretrained(model_name), config
)
model = GPTLMHeadModel(config, device=device, dtype=dtype)
model.load_state_dict(pretrained_state_dict)
model.eval()
model(input_ids) # Warm up
print("Without CUDA graph")
torch.cuda.synchronize()
start = time.time()
out = model.generate(
input_ids=input_ids,
max_length=max_length,
eos_token_id=eos_token_id,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
teacher_outputs=out_hf.sequences,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
# Capture graph outside the timing loop
batch_size, seqlen_og = input_ids.shape
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
print("With CUDA graph")
torch.cuda.synchronize()
start = time.time()
out_cg = model.generate(
input_ids=input_ids,
max_length=max_length,
cg=True,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
teacher_outputs=out_hf.sequences,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
with torch.no_grad():
logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1]
logits_hf = torch.stack(out_hf.scores, dim=1)
logits = torch.stack(out.scores, dim=1)
logits_cg = torch.stack(out_cg.scores, dim=1)
del model
hf_error = (logits_hf - logits_ref).abs().max().item()
print(f"HF fp16 logits max diff: {hf_error}")
print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
assert torch.equal(logits_cg, logits)
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_baichuan.py -k "baichuan_parallel_generation"
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize("model_name", ["baichuan-inc/Baichuan-7B"])
def test_baichuan_parallel_generation(model_name, world_size):
"""Check that our implementation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
"""
from apex.transformer import parallel_state
dtype = torch.float16
config = baichuan_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = False
config.residual_in_fp32 = True
config.pad_vocab_size_multiple = 8 * world_size
config.sequence_parallel = False # Need to set this to False for generation
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
process_group = parallel_state.get_tensor_model_parallel_group()
torch.manual_seed(0)
batch_size = 1
seqlen = 100
max_length = 150
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
# GPU0 and GPU1 and things would hang
torch.cuda.set_device(device)
pretrained_state_dict = remap_state_dict_hf_baichuan(
state_dict_from_pretrained(model_name), config
)
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
model.eval()
print("Without CUDA graph")
out = model.generate(
input_ids=input_ids,
max_length=max_length,
tensor_parallel=world_size,
vocab_size=config.vocab_size,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
)
# Capture graph outside the timing loop
batch_size, seqlen_og = input_ids.shape
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
print("With CUDA graph")
out_cg = model.generate(
input_ids=input_ids,
max_length=max_length,
tensor_parallel=world_size,
vocab_size=config.vocab_size,
cg=True,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
)
del model
parallel_state.destroy_model_parallel()
if rank == 0:
# Without device_map, the model is loaded on the CPU, which is very slow
model_hf = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True
)
model_hf.eval()
print("HF fp16")
torch.cuda.synchronize()
start = time.time()
with torch.inference_mode():
out_hf = model_hf.generate(
input_ids=input_ids,
max_length=max_length,
return_dict_in_generate=True,
output_scores=True,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
del model_hf
model_ref = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", trust_remote_code=True
)
model_ref.eval()
with torch.inference_mode():
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1]
del model_ref
logits_hf = torch.stack(out_hf.scores, dim=1)
logits = torch.stack(out.scores, dim=1)
logits_cg = torch.stack(out_cg.scores, dim=1)
hf_error = (logits_hf - logits_ref).abs().max().item()
print(f"HF fp16 logits max diff: {hf_error}")
print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
assert torch.equal(logits_cg, logits)