Spaces:
Sleeping
Sleeping
# Run test with: | |
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/models/test_gpt_parallel.py | |
import math | |
import pytest | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from apex.transformer import parallel_state | |
from einops import rearrange | |
from flash_attn.losses.cross_entropy import CrossEntropyLoss | |
from flash_attn.models.gpt import GPTLMHeadModel, shard_state_dict_tp | |
from flash_attn.utils.distributed import allreduce_sequence_parallel_grad | |
from transformers import GPT2Config | |
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8 | |
# @pytest.mark.parametrize('dtype', [torch.bfloat16]) | |
# @pytest.mark.parametrize('world_size', [2]) | |
# @pytest.mark.parametrize('sequence_parallel', [False]) | |
# @pytest.mark.parametrize('has_pos_emb', [True]) | |
def test_gpt_parallel(dim, has_pos_emb, sequence_parallel, world_size, dtype): | |
head_dim = 64 | |
assert dim % head_dim == 0 | |
num_heads = dim // head_dim | |
assert num_heads % world_size == 0 | |
vocab_size = 50264 | |
assert vocab_size % world_size == 0 | |
num_layers = 2 | |
rtol, atol = (3e-3, 1e-1) if dtype == torch.bfloat16 else (3e-3, 1e-2) | |
if not torch.distributed.is_initialized(): | |
torch.distributed.init_process_group(backend="nccl", init_method="env://") | |
device = f"cuda:{torch.distributed.get_rank()}" | |
assert world_size <= torch.distributed.get_world_size() | |
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) | |
rank = parallel_state.get_tensor_model_parallel_rank() | |
process_group = parallel_state.get_tensor_model_parallel_group() | |
# set seed | |
torch.random.manual_seed(0) | |
batch_size = 8 | |
seqlen = 1024 | |
assert (batch_size * seqlen) % world_size == 0 | |
input_ids = torch.randint(0, vocab_size, (batch_size, seqlen + 1), device=device) | |
# We need to generate g here so that all processes get the same gradient, | |
# as rank 0 will have an extra bias that changes the RNG. | |
g = torch.randn(batch_size * seqlen, device=device) | |
config = GPT2Config( | |
n_embd=dim, | |
n_head=num_heads, | |
n_layer=num_layers, | |
n_positions=seqlen if has_pos_emb else 0, | |
vocab_size=50257, | |
resid_pdrop=0.0, | |
embd_pdrop=0.0, | |
attn_pdrop=0.0, | |
scale_attn_by_inverse_layer_idx=True, | |
use_flash_attn=True, | |
fused_mlp=True, | |
fused_bias_fc=True, | |
fused_dropout_add_ln=True, | |
residual_in_fp32=True, | |
rotary_emb_fraction=0.0 if has_pos_emb else 0.5, | |
pad_vocab_size_multiple=8 * world_size, | |
sequence_parallel=sequence_parallel, | |
) | |
config.vocab_size = math.ceil(config.vocab_size / (8 * world_size)) * (8 * world_size) | |
model_pt = GPTLMHeadModel(config, device=device) | |
def init_layer_norm(module): | |
if isinstance(module, nn.LayerNorm): | |
nn.init.normal_(module.weight) | |
nn.init.normal_(module.bias) | |
model_pt.apply(init_layer_norm) | |
model = GPTLMHeadModel(config, process_group=process_group, device=device) | |
total_nparams = sum(p.numel() for p in model_pt.parameters()) | |
sharded_nparams = sum(p.numel() for p in model.parameters()) | |
sharded_nparams_all = torch.empty(world_size, dtype=torch.long, device=device) | |
torch.distributed.all_gather_into_tensor( | |
sharded_nparams_all, torch.tensor([sharded_nparams], device=device), group=process_group | |
) | |
shared_nparams = sum( | |
p.numel() for p in model.parameters() if getattr(p, "_shared_params", False) | |
) | |
shared_nparams_all = torch.empty(world_size, dtype=torch.long, device=device) | |
torch.distributed.all_gather_into_tensor( | |
shared_nparams_all, torch.tensor([shared_nparams], device=device), group=process_group | |
) | |
assert torch.all(shared_nparams_all == shared_nparams) | |
assert total_nparams == ( | |
(sharded_nparams_all - shared_nparams_all).sum().item() + shared_nparams | |
) | |
# vocab_size has been rounded up here | |
partition_vocab_size = config.vocab_size // world_size | |
partition_dim = dim // world_size | |
partition_hidden_dim = 4 * dim // world_size | |
with torch.no_grad(): | |
model.load_state_dict(shard_state_dict_tp(model_pt.state_dict(), config, world_size, rank)) | |
model.tie_weights() | |
with torch.autocast(device_type="cuda", dtype=dtype): | |
out = model(input_ids[:, :-1]).logits | |
if not sequence_parallel: | |
out = rearrange(out, "b s d -> (b s) d") | |
out_pt = rearrange(model_pt(input_ids[:, :-1]).logits, "b s d -> (b s) d") | |
partition_batch_dim = batch_size * seqlen // world_size | |
assert torch.allclose( | |
out, | |
out_pt[:, rank * partition_vocab_size : (rank + 1) * partition_vocab_size], | |
rtol=rtol, | |
atol=atol, | |
) | |
loss_fn = CrossEntropyLoss(inplace_backward=True, reduction="none", process_group=process_group) | |
loss_fn_pt = CrossEntropyLoss(inplace_backward=True, reduction="none") | |
loss = loss_fn(out, input_ids[:, 1:].flatten()) | |
loss_pt = loss_fn_pt(out_pt, input_ids[:, 1:].flatten()) | |
assert torch.allclose(loss, loss_pt, rtol=rtol, atol=atol) | |
loss_pt.backward(g) | |
loss.backward(g) | |
allreduce_sequence_parallel_grad(model, process_group) | |
parallel_state.destroy_model_parallel() | |
grad_dict = shard_state_dict_tp( | |
{k: v.grad for k, v in model_pt.named_parameters()}, config, world_size, rank | |
) | |
assert torch.allclose( | |
model.transformer.embeddings.word_embeddings.weight.grad, | |
grad_dict["transformer.embeddings.word_embeddings.weight"], | |
rtol=rtol, | |
atol=atol * 5, | |
) | |
if has_pos_emb: | |
assert torch.allclose( | |
model.transformer.embeddings.position_embeddings.weight.grad, | |
grad_dict["transformer.embeddings.position_embeddings.weight"], | |
rtol=rtol, | |
atol=atol, | |
) | |
assert torch.allclose( | |
model.transformer.ln_f.weight.grad, | |
grad_dict["transformer.ln_f.weight"], | |
rtol=rtol, | |
atol=atol, | |
) | |
assert torch.allclose( | |
model.transformer.ln_f.bias.grad, grad_dict["transformer.ln_f.bias"], rtol=rtol, atol=atol | |
) | |
for i in range(num_layers): | |
assert torch.allclose( | |
model.transformer.layers[i].mixer.Wqkv.weight.grad, | |
grad_dict[f"transformer.layers.{i}.mixer.Wqkv.weight"], | |
rtol=rtol, | |
atol=atol * 10, | |
) | |
assert torch.allclose( | |
model.transformer.layers[i].mixer.Wqkv.bias.grad, | |
grad_dict[f"transformer.layers.{i}.mixer.Wqkv.bias"], | |
rtol=rtol, | |
atol=atol * 10, | |
) | |
assert torch.allclose( | |
model.transformer.layers[i].mixer.out_proj.weight.grad, | |
grad_dict[f"transformer.layers.{i}.mixer.out_proj.weight"], | |
rtol=rtol, | |
atol=atol * 10, | |
) | |
if rank == 0: | |
assert torch.allclose( | |
model.transformer.layers[i].mixer.out_proj.bias.grad, | |
grad_dict[f"transformer.layers.{i}.mixer.out_proj.bias"], | |
rtol=rtol, | |
atol=atol * 5, | |
) | |
assert torch.allclose( | |
model.transformer.layers[i].mlp.fc1.weight.grad, | |
grad_dict[f"transformer.layers.{i}.mlp.fc1.weight"], | |
rtol=rtol, | |
atol=atol * 10, | |
) | |
assert torch.allclose( | |
model.transformer.layers[i].mlp.fc1.bias.grad, | |
grad_dict[f"transformer.layers.{i}.mlp.fc1.bias"], | |
rtol=rtol, | |
atol=atol * 10, | |
) | |
assert torch.allclose( | |
model.transformer.layers[i].mlp.fc2.weight.grad, | |
grad_dict[f"transformer.layers.{i}.mlp.fc2.weight"], | |
rtol=rtol, | |
atol=atol * 10, | |
) | |
if rank == 0: | |
assert torch.allclose( | |
model.transformer.layers[i].mlp.fc2.bias.grad, | |
grad_dict[f"transformer.layers.{i}.mlp.fc2.bias"], | |
rtol=rtol, | |
atol=atol * 5, | |
) | |
assert torch.allclose( | |
model.transformer.layers[i].norm1.weight.grad, | |
grad_dict[f"transformer.layers.{i}.norm1.weight"], | |
rtol=rtol, | |
atol=atol, | |
) | |
assert torch.allclose( | |
model.transformer.layers[i].norm1.bias.grad, | |
grad_dict[f"transformer.layers.{i}.norm1.bias"], | |
rtol=rtol, | |
atol=atol, | |
) | |
assert torch.allclose( | |
model.transformer.layers[i].norm2.weight.grad, | |
grad_dict[f"transformer.layers.{i}.norm2.weight"], | |
rtol=rtol, | |
atol=atol, | |
) | |
assert torch.allclose( | |
model.transformer.layers[i].norm2.bias.grad, | |
grad_dict[f"transformer.layers.{i}.norm2.bias"], | |
rtol=rtol, | |
atol=atol, | |
) | |