Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_mlp_parallel.py
import pytest
import torch
import torch.nn.functional as F
from apex.transformer import parallel_state, tensor_parallel
from einops import rearrange
from flash_attn.modules.mlp import GatedMlp, ParallelGatedMlp
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
@pytest.mark.parametrize("dtype", [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize("world_size", [1, 2, 4, 8])
# @pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize("sequence_parallel", [True, False])
# @pytest.mark.parametrize('sequence_parallel', [False])
@pytest.mark.parametrize("activation", [F.silu, F.sigmoid])
# @pytest.mark.parametrize('activation', [F.silu])
@pytest.mark.parametrize("dim", [1024, 4096])
# @pytest.mark.parametrize('dim', [1024])
def test_mlp_parallel(dim, activation, sequence_parallel, world_size, dtype):
rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
# set seed
torch.random.manual_seed(0)
batch_size = 2
seqlen = 1024
assert (batch_size * seqlen) % world_size == 0
x_pt = torch.randn(batch_size * seqlen, dim, device=device, dtype=dtype, requires_grad=True)
# We need to generate g here so that all processes get the same gradient,
# as rank 0 will have an extra bias that changes the RNG.
# If we don't divide by batch_size, the gradient gets a bit too large.
g = torch.randn_like(x_pt) / 32
if sequence_parallel:
x = (
tensor_parallel.scatter_to_sequence_parallel_region(x_pt)
.detach()
.clone()
.requires_grad_()
)
else:
x = x_pt.detach().clone().requires_grad_()
model_pt = GatedMlp(dim, activation=activation, device=device, dtype=dtype)
partition_dim = model_pt.fc1.weight.shape[0] // 2 // world_size
model = ParallelGatedMlp(
dim,
parallel_state.get_tensor_model_parallel_group(),
activation=activation,
sequence_parallel=sequence_parallel,
device=device,
dtype=dtype,
)
with torch.no_grad():
model.fc1.weight.copy_(
rearrange(
rearrange(model_pt.fc1.weight, "(two o) i -> two o i", two=2)[
:, rank * partition_dim : (rank + 1) * partition_dim
],
"two o i -> (two o) i",
)
)
model.fc1.bias.copy_(
rearrange(
rearrange(model_pt.fc1.bias, "(two o) -> two o", two=2)[
:, rank * partition_dim : (rank + 1) * partition_dim
],
"two o -> (two o)",
)
)
model.fc2.weight.copy_(
model_pt.fc2.weight[:, rank * partition_dim : (rank + 1) * partition_dim]
)
if rank == 0:
model.fc2.bias.copy_(model_pt.fc2.bias)
out = model(x)
out_pt = model_pt(x_pt)
partition_batch_dim = batch_size * seqlen // world_size
assert torch.allclose(
out,
out_pt[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
if sequence_parallel
else out_pt,
rtol=rtol,
atol=atol,
)
out_pt.backward(g)
out.backward(
g[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] if sequence_parallel else g
)
parallel_state.destroy_model_parallel()
assert torch.allclose(
x.grad,
x_pt.grad[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
if sequence_parallel
else x_pt.grad,
rtol=rtol,
atol=atol,
)
assert torch.allclose(
model.fc1.weight.grad,
rearrange(
rearrange(model_pt.fc1.weight.grad, "(two o) i -> two o i", two=2)[
:, rank * partition_dim : (rank + 1) * partition_dim
],
"two o i -> (two o) i",
),
rtol=rtol,
atol=atol,
)
assert torch.allclose(
model.fc1.bias.grad,
rearrange(
rearrange(model_pt.fc1.bias.grad, "(two o) -> two o", two=2)[
:, rank * partition_dim : (rank + 1) * partition_dim
],
"two o -> (two o)",
),
rtol=rtol,
atol=atol,
)
assert torch.allclose(
model.fc2.weight.grad,
model_pt.fc2.weight.grad[:, rank * partition_dim : (rank + 1) * partition_dim],
rtol=rtol,
atol=atol,
)
if rank == 0:
assert torch.allclose(model.fc2.bias.grad, model_pt.fc2.bias.grad, rtol=rtol, atol=atol)