Factory-POC / flash-attention /tests /ops /test_dropout_layer_norm.py
Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
import math
import pytest
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from flash_attn.ops.layer_norm import (
DropoutAddLayerNorm,
dropout_add_layer_norm,
dropout_add_layer_norm_parallel_residual,
dropout_add_layer_norm_subset,
)
from flash_attn.ops.rms_norm import (
DropoutAddRMSNorm,
dropout_add_rms_norm,
dropout_add_rms_norm_parallel_residual,
dropout_add_rms_norm_subset,
)
try:
from apex.normalization import FusedRMSNorm
from apex.normalization.fused_layer_norm import fused_rms_norm_affine
except:
FusedRMSNorm, fused_rms_norm_affine = None, None
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
@pytest.mark.parametrize("is_rms_norm", [False, True])
@pytest.mark.parametrize("has_colscale", [True, False])
# @pytest.mark.parametrize('has_colscale', [False])
@pytest.mark.parametrize("has_rowscale", [True, False])
# @pytest.mark.parametrize('has_rowscale', [True])
@pytest.mark.parametrize("has_residual", [True, False])
# @pytest.mark.parametrize('has_residual', [False])
@pytest.mark.parametrize("dropout_p", [0.37, 0.0])
# @pytest.mark.parametrize('dropout_p', [0.0])
@pytest.mark.parametrize("weight_dtype", [torch.float32, torch.float16])
# @pytest.mark.parametrize('weight_dtype', [torch.float32])
@pytest.mark.parametrize(
"input_dtype,residual_dtype",
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
)
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float32)])
@pytest.mark.parametrize(
"hidden_size",
[192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144],
)
# @pytest.mark.parametrize('hidden_size', [256])
def test_dropout_layer_norm_training(
hidden_size,
input_dtype,
residual_dtype,
weight_dtype,
dropout_p,
has_residual,
has_rowscale,
has_colscale,
is_rms_norm,
):
if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
pytest.skip() # Not supported
if is_rms_norm and FusedRMSNorm is None:
pytest.skip() # We need Apex's FusedRMSNorm to test
layer_norm_cls = torch.nn.LayerNorm if not is_rms_norm else FusedRMSNorm
our_layer_norm_cls = DropoutAddLayerNorm if not is_rms_norm else DropoutAddRMSNorm
our_layer_norm_func = dropout_add_layer_norm if not is_rms_norm else dropout_add_rms_norm
device = "cuda"
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol, atol = (1e-3, 1e-4)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
x0_pt = torch.randn(
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
)
x0 = x0_pt.detach().clone().requires_grad_()
x0_ref = x0_pt.detach().clone().float().requires_grad_()
if has_colscale:
colscale = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
colscale_pt = colscale.detach().clone().requires_grad_()
colscale_ref = colscale.detach().clone().float().requires_grad_()
else:
colscale = None
if has_residual:
res_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
res = res_pt.detach().clone().requires_grad_()
res_ref = res_pt.detach().clone().float().requires_grad_()
else:
res = None
if has_rowscale:
rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype)
survival_rate = 0.87
rowscale = rowscale.bernoulli_(survival_rate) / survival_rate
x0_scaled_pt = x0_pt * rearrange(rowscale, "... -> ... 1")
x0_scaled_ref = x0_ref * rearrange(rowscale, "... -> ... 1")
else:
rowscale = None
x0_scaled_pt = x0_pt
x0_scaled_ref = x0_ref
if has_colscale:
x0_scaled_pt = x0_scaled_pt * colscale_pt
x0_scaled_ref = x0_scaled_ref * colscale_ref
model_pt = layer_norm_cls(hidden_size).to(device=device, dtype=weight_dtype)
torch.nn.init.normal_(model_pt.weight)
if not is_rms_norm:
torch.nn.init.normal_(model_pt.bias)
model_ref = layer_norm_cls(hidden_size).to(device=device, dtype=torch.float32)
model = our_layer_norm_cls(hidden_size, p=dropout_p, device=device, dtype=weight_dtype)
with torch.no_grad():
model.weight.copy_(model_pt.weight)
model_ref.weight.copy_(model_pt.weight)
if not is_rms_norm:
model.bias.copy_(model_pt.bias)
model_ref.bias.copy_(model_pt.bias)
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
out, dmask = our_layer_norm_func(
x0,
res,
model.weight,
model.bias,
model.p,
model.eps,
rowscale=rowscale,
layerscale=colscale,
residual_in_fp32=residual_in_fp32,
return_dropout_mask=True,
)
assert out.dtype == input_dtype
print(f"Actual dropout fraction: {1 - dmask.float().mean().item()}")
if has_residual:
residual_pt = (
(x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + res_pt.float()
).to(dtype=residual_dtype)
residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + res_ref
else:
residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(
dtype=residual_dtype
)
residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p)
out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)
out_ref = model_ref(residual_ref)
assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
g = torch.randn_like(out) / batch_size
out_pt.backward(g)
out.backward(g)
out_ref.backward(g)
assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4
if has_residual:
assert (res.grad - res_ref.grad).abs().max() <= 4 * (
res_pt.grad - res_ref.grad
).abs().max() + 1e-4
assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 3 * (
model_pt.weight.grad - model_ref.weight.grad
).abs().max() + 3e-5
if not is_rms_norm:
assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (
model_pt.bias.grad - model_ref.bias.grad
).abs().max() + 3e-5
if has_colscale:
assert (colscale.grad - colscale_ref.grad).abs().max() <= 2 * (
colscale_pt.grad - colscale_ref.grad
).abs().max() + 2e-4
@pytest.mark.parametrize("weight_dtype", [torch.float32, torch.float16])
@pytest.mark.parametrize(
"input_dtype,residual_dtype",
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
)
@pytest.mark.parametrize("hidden_size", [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
def test_dropout_layer_norm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype):
if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
pytest.skip() # Not supported
device = "cuda"
# rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
rtol, atol = (1e-3, 1e-4)
dropout_p = 0.37
# set seed
torch.random.manual_seed(0)
batch_size = 32
seqlen = 512
x0_pt = torch.randn(
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
)
x0 = x0_pt.detach().clone().requires_grad_()
x0_ref = x0_pt.detach().clone().float().requires_grad_()
res_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
res = res_pt.detach().clone().requires_grad_()
res_ref = res_pt.detach().clone().float().requires_grad_()
model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
torch.nn.init.normal_(model_pt.weight)
torch.nn.init.normal_(model_pt.bias)
model = DropoutAddLayerNorm(hidden_size, p=dropout_p, device=device, dtype=weight_dtype)
model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
with torch.no_grad():
model.weight.copy_(model_pt.weight)
model.bias.copy_(model_pt.bias)
model_ref.weight.copy_(model_pt.weight)
model_ref.bias.copy_(model_pt.bias)
model_pt.eval()
model.eval()
model_ref.eval()
out = model(x0, res)
residual_pt = (x0_pt.float() + res_pt.float()).to(dtype=residual_dtype)
residual_ref = x0_ref + res_ref
out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype)
out_ref = model_ref(residual_ref)
assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
@pytest.mark.parametrize("is_rms_norm", [False, True])
@pytest.mark.parametrize("has_colscale", [True, False])
@pytest.mark.parametrize("has_rowscale", [True, False])
@pytest.mark.parametrize("has_residual", [True, False])
@pytest.mark.parametrize("dropout_p", [0.37, 0.0])
@pytest.mark.parametrize("weight_dtype", [torch.float32, torch.float16])
@pytest.mark.parametrize(
"input_dtype,residual_dtype",
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
)
# @pytest.mark.parametrize('has_colscale', [True])
# @pytest.mark.parametrize('has_rowscale', [False])
# @pytest.mark.parametrize('has_residual', [True])
# @pytest.mark.parametrize('dropout_p', [0.0])
# @pytest.mark.parametrize('weight_dtype', [torch.float32])
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float32, torch.float32)])
@pytest.mark.parametrize(
"hidden_size",
[192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144],
)
# @pytest.mark.parametrize('hidden_size', [256])
def test_dropout_layer_norm_prenorm_training(
hidden_size,
input_dtype,
residual_dtype,
weight_dtype,
dropout_p,
has_residual,
has_rowscale,
has_colscale,
is_rms_norm,
):
if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
pytest.skip() # Not supported
if is_rms_norm and FusedRMSNorm is None:
pytest.skip() # We need Apex's FusedRMSNorm to test
layer_norm_cls = torch.nn.LayerNorm if not is_rms_norm else FusedRMSNorm
our_layer_norm_cls = DropoutAddLayerNorm if not is_rms_norm else DropoutAddRMSNorm
our_layer_norm_func = dropout_add_layer_norm if not is_rms_norm else dropout_add_rms_norm
device = "cuda"
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol, atol = (1e-3, 2e-4)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
x0_pt = torch.randn(
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
)
x0 = x0_pt.detach().clone().requires_grad_()
x0_ref = x0_pt.detach().clone().float().requires_grad_()
if has_colscale:
colscale = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
colscale_pt = colscale.detach().clone().requires_grad_()
colscale_ref = colscale.detach().clone().float().requires_grad_()
else:
colscale = None
if has_residual:
res_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
res = res_pt.detach().clone().requires_grad_()
res_ref = res_pt.detach().clone().float().requires_grad_()
else:
res = None
if has_rowscale:
rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype)
survival_rate = 0.87
rowscale = rowscale.bernoulli_(survival_rate) / survival_rate
x0_scaled_pt = x0_pt * rearrange(rowscale, "... -> ... 1")
x0_scaled_ref = x0_ref * rearrange(rowscale, "... -> ... 1")
else:
rowscale = None
x0_scaled_pt = x0_pt
x0_scaled_ref = x0_ref
if has_colscale:
x0_scaled_pt = x0_scaled_pt * colscale_pt
x0_scaled_ref = x0_scaled_ref * colscale_ref
model_pt = layer_norm_cls(hidden_size).to(device=device, dtype=weight_dtype)
torch.nn.init.normal_(model_pt.weight)
if not is_rms_norm:
torch.nn.init.normal_(model_pt.bias)
model_ref = layer_norm_cls(hidden_size).to(device=device, dtype=torch.float32)
model = our_layer_norm_cls(
hidden_size, prenorm=True, p=dropout_p, device=device, dtype=weight_dtype
)
with torch.no_grad():
model.weight.copy_(model_pt.weight)
model_ref.weight.copy_(model_pt.weight)
if not is_rms_norm:
model.bias.copy_(model_pt.bias)
model_ref.bias.copy_(model_pt.bias)
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
out, residual, dmask = our_layer_norm_func(
x0,
res,
model.weight,
model.bias,
model.p,
model.eps,
rowscale=rowscale,
layerscale=colscale,
prenorm=True,
residual_in_fp32=residual_in_fp32,
return_dropout_mask=True,
)
print(f"Actual dropout fraction: {1 - dmask.float().mean().item()}")
if has_residual:
residual_pt = (
(x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + res_pt.float()
).to(dtype=residual_dtype)
residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + res_ref
else:
residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(
dtype=residual_dtype
)
residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p)
out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)
out_ref = model_ref(residual_ref)
assert out.dtype == input_dtype
assert residual.dtype == residual_dtype
assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
assert (residual - residual_ref).abs().max() <= 4 * (
residual_pt - residual_ref
).abs().max() + 1e-4
g = torch.randn_like(out) / batch_size
(out_pt * F.sigmoid(residual_pt)).backward(g)
(out * F.sigmoid(residual)).backward(g)
(out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g)
assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4
if has_residual:
assert (res.grad - res_ref.grad).abs().max() <= 4 * (
res_pt.grad - res_ref.grad
).abs().max() + 1e-4
assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (
model_pt.weight.grad - model_ref.weight.grad
).abs().max() + 2e-4
if not is_rms_norm:
assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (
model_pt.bias.grad - model_ref.bias.grad
).abs().max() + 2e-4
if has_colscale:
assert (colscale.grad - colscale_ref.grad).abs().max() <= 2 * (
colscale_pt.grad - colscale_ref.grad
).abs().max() + 2e-4
@pytest.mark.parametrize("weight_dtype", [torch.float32, torch.float16])
@pytest.mark.parametrize(
"input_dtype,residual_dtype",
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
)
@pytest.mark.parametrize("hidden_size", [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
def test_dropout_layer_norm_prenorm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype):
if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
pytest.skip() # Not supported
device = "cuda"
# rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
rtol, atol = (1e-3, 1e-4)
dropout_p = 0.37
# set seed
torch.random.manual_seed(0)
batch_size = 32
seqlen = 512
x0_pt = torch.randn(
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
)
x0 = x0_pt.detach().clone().requires_grad_()
x0_ref = x0_pt.detach().clone().float().requires_grad_()
res_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
res = res_pt.detach().clone().requires_grad_()
res_ref = res_pt.detach().clone().float().requires_grad_()
model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
torch.nn.init.normal_(model_pt.weight)
torch.nn.init.normal_(model_pt.bias)
model = DropoutAddLayerNorm(
hidden_size, prenorm=True, p=dropout_p, device=device, dtype=weight_dtype
)
model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
with torch.no_grad():
model.weight.copy_(model_pt.weight)
model.bias.copy_(model_pt.bias)
model_ref.weight.copy_(model_pt.weight)
model_ref.bias.copy_(model_pt.bias)
model_pt.eval()
model.eval()
model_ref.eval()
out, residual = model(x0, res)
residual_pt = (x0_pt.float() + res_pt.float()).to(dtype=residual_dtype)
residual_ref = x0_ref + res_ref
out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype)
out_ref = model_ref(residual_ref)
assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
assert (residual - residual_ref).abs().max() <= 4 * (
residual_pt - residual_ref
).abs().max() + 1e-4
@pytest.mark.parametrize("has_colscale", [True, False])
@pytest.mark.parametrize("has_residual", [True, False])
@pytest.mark.parametrize("dropout_p", [0.37, 0.0])
@pytest.mark.parametrize("weight_dtype", [torch.float32, torch.float16])
@pytest.mark.parametrize(
"input_dtype,residual_dtype",
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
)
# @pytest.mark.parametrize('has_colscale', [True])
# @pytest.mark.parametrize('has_residual', [True])
# @pytest.mark.parametrize('dropout_p', [0.0])
# @pytest.mark.parametrize('weight_dtype', [torch.float32])
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float32, torch.float32)])
@pytest.mark.parametrize(
"hidden_size",
[192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144],
)
# @pytest.mark.parametrize('hidden_size', [256])
def test_dropout_layer_norm_subset_training(
hidden_size, input_dtype, residual_dtype, weight_dtype, dropout_p, has_residual, has_colscale
):
if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
pytest.skip() # Not supported
device = "cuda"
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol, atol = (1e-3, 2e-4)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
drop_path_rate = 0.4
drop_path_scale = 1 / (1 - drop_path_rate)
def generate_droppath_masks(batch_size, seqlen, drop_path_rate, device):
# Do it on CPU so we can get the numrows (with .item()) without GPU-CPU sync
mask_batch = torch.rand(batch_size) < 1 - drop_path_rate
numrows = (mask_batch).sum().item() * seqlen
mask_batch = mask_batch.to(device=device, non_blocking=True)
mask_batch_seqlen = repeat(mask_batch, "b -> (b s)", s=seqlen)
subset = torch.cumsum(mask_batch_seqlen, dim=0, dtype=torch.int32).masked_fill_(
~mask_batch_seqlen, 0
)
return mask_batch, numrows, rearrange(subset, "(b s) -> b s", b=batch_size)
x0_mask_batch, x0_numrows, x0_subset = generate_droppath_masks(
batch_size, seqlen, drop_path_rate, device
)
out_mask_batch, out_numrows, out_subset = generate_droppath_masks(
batch_size, seqlen, drop_path_rate, device
)
x0_pt = torch.randn(
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
)
x0 = x0_pt.detach().clone()[x0_mask_batch].requires_grad_()
x0_ref = x0_pt.detach().clone().float().requires_grad_()
if has_colscale:
colscale = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
colscale_pt = colscale.detach().clone().requires_grad_()
colscale_ref = colscale.detach().clone().float().requires_grad_()
else:
colscale = None
if has_residual:
res_pt = torch.randn_like(x0_pt, dtype=residual_dtype, requires_grad=True)
res = res_pt.detach().clone().requires_grad_()
res_ref = res_pt.detach().clone().float().requires_grad_()
else:
res = None
if has_colscale:
x0_scaled_pt = x0_pt * colscale_pt
x0_scaled_ref = x0_ref * colscale_ref
else:
x0_scaled_pt = x0_pt
x0_scaled_ref = x0_ref
model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
torch.nn.init.normal_(model_pt.weight)
torch.nn.init.normal_(model_pt.bias)
model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
model = DropoutAddLayerNorm(
hidden_size, prenorm=False, p=dropout_p, device=device, dtype=weight_dtype
)
with torch.no_grad():
model.weight.copy_(model_pt.weight)
model.bias.copy_(model_pt.bias)
model_ref.weight.copy_(model_pt.weight)
model_ref.bias.copy_(model_pt.bias)
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
out, dmask = dropout_add_layer_norm_subset(
x0,
res,
model.weight,
model.bias,
model.p,
model.eps,
layerscale=colscale,
x0_subset=x0_subset,
out_subset=out_subset,
rowscale_const=drop_path_scale,
out_numrows=out_numrows,
prenorm=False,
residual_in_fp32=residual_in_fp32,
return_dropout_mask=True,
)
print(f"Actual dropout fraction: {1 - dmask.float().mean().item()}")
x0_scaled_pt = (
x0_scaled_pt.masked_fill(repeat(~x0_mask_batch, "b -> b s d", s=seqlen, d=hidden_size), 0)
* drop_path_scale
)
x0_scaled_ref = (
x0_scaled_ref.masked_fill(repeat(~x0_mask_batch, "b -> b s d", s=seqlen, d=hidden_size), 0)
* drop_path_scale
)
dmask_expanded = torch.zeros_like(x0_pt, dtype=torch.uint8)
dmask_expanded[x0_mask_batch] = dmask
if has_residual:
residual_pt = (
(x0_scaled_pt.float() * dmask_expanded.float()) / (1 - dropout_p) + res_pt.float()
).to(dtype=residual_dtype)
residual_ref = (x0_scaled_ref * dmask_expanded.float()) / (1 - dropout_p) + res_ref
else:
residual_pt = ((x0_scaled_pt.float() * dmask_expanded.float()) / (1 - dropout_p)).to(
dtype=residual_dtype
)
residual_ref = (x0_scaled_ref * dmask_expanded.float()) / (1 - dropout_p)
out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)[out_mask_batch]
out_ref = model_ref(residual_ref)[out_mask_batch]
assert out.dtype == input_dtype
assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
g = torch.randn_like(out) / batch_size
out_pt.backward(g)
out.backward(g)
out_ref.backward(g)
assert (x0.grad - x0_ref.grad[x0_mask_batch]).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad)[
x0_mask_batch
].abs().max() + 1e-4
if has_residual:
assert (res.grad - res_ref.grad).abs().max() <= 4 * (
res_pt.grad - res_ref.grad
).abs().max() + 1e-4
assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (
model_pt.weight.grad - model_ref.weight.grad
).abs().max() + 2e-4
assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (
model_pt.bias.grad - model_ref.bias.grad
).abs().max() + 2e-4
if has_colscale:
assert (colscale.grad - colscale_ref.grad).abs().max() <= 2 * (
colscale_pt.grad - colscale_ref.grad
).abs().max() + 2e-4
@pytest.mark.parametrize("has_colscale", [True, False])
@pytest.mark.parametrize("has_residual", [True, False])
@pytest.mark.parametrize("dropout_p", [0.37, 0.0])
@pytest.mark.parametrize("weight_dtype", [torch.float32, torch.float16])
@pytest.mark.parametrize(
"input_dtype,residual_dtype",
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
)
# @pytest.mark.parametrize('has_colscale', [True])
# @pytest.mark.parametrize('has_residual', [True])
# @pytest.mark.parametrize('dropout_p', [0.0])
# @pytest.mark.parametrize('weight_dtype', [torch.float32])
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float32, torch.float32)])
@pytest.mark.parametrize(
"hidden_size",
[192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144],
)
# @pytest.mark.parametrize('hidden_size', [256])
def test_dropout_layer_norm_subset_prenorm_training(
hidden_size, input_dtype, residual_dtype, weight_dtype, dropout_p, has_residual, has_colscale
):
if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
pytest.skip() # Not supported
device = "cuda"
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol, atol = (1e-3, 2e-4)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
drop_path_rate = 0.4
drop_path_scale = 1 / (1 - drop_path_rate)
def generate_droppath_masks(batch_size, seqlen, drop_path_rate, device):
# Do it on CPU so we can get the numrows (with .item()) without GPU-CPU sync
mask_batch = torch.rand(batch_size) < 1 - drop_path_rate
numrows = (mask_batch).sum().item() * seqlen
mask_batch = mask_batch.to(device=device, non_blocking=True)
mask_batch_seqlen = repeat(mask_batch, "b -> (b s)", s=seqlen)
subset = torch.cumsum(mask_batch_seqlen, dim=0, dtype=torch.int32).masked_fill_(
~mask_batch_seqlen, 0
)
return mask_batch, numrows, rearrange(subset, "(b s) -> b s", b=batch_size)
x0_mask_batch, x0_numrows, x0_subset = generate_droppath_masks(
batch_size, seqlen, drop_path_rate, device
)
out_mask_batch, out_numrows, out_subset = generate_droppath_masks(
batch_size, seqlen, drop_path_rate, device
)
x0_pt = torch.randn(
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
)
x0 = x0_pt.detach().clone()[x0_mask_batch].requires_grad_()
x0_ref = x0_pt.detach().clone().float().requires_grad_()
if has_colscale:
colscale = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
colscale_pt = colscale.detach().clone().requires_grad_()
colscale_ref = colscale.detach().clone().float().requires_grad_()
else:
colscale = None
if has_residual:
res_pt = torch.randn_like(x0_pt, dtype=residual_dtype, requires_grad=True)
res = res_pt.detach().clone().requires_grad_()
res_ref = res_pt.detach().clone().float().requires_grad_()
else:
res = None
if has_colscale:
x0_scaled_pt = x0_pt * colscale_pt
x0_scaled_ref = x0_ref * colscale_ref
else:
x0_scaled_pt = x0_pt
x0_scaled_ref = x0_ref
model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
torch.nn.init.normal_(model_pt.weight)
torch.nn.init.normal_(model_pt.bias)
model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
model = DropoutAddLayerNorm(
hidden_size, prenorm=True, p=dropout_p, device=device, dtype=weight_dtype
)
with torch.no_grad():
model.weight.copy_(model_pt.weight)
model.bias.copy_(model_pt.bias)
model_ref.weight.copy_(model_pt.weight)
model_ref.bias.copy_(model_pt.bias)
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
out, residual, dmask = dropout_add_layer_norm_subset(
x0,
res,
model.weight,
model.bias,
model.p,
model.eps,
layerscale=colscale,
x0_subset=x0_subset,
out_subset=out_subset,
rowscale_const=drop_path_scale,
out_numrows=out_numrows,
prenorm=True,
residual_in_fp32=residual_in_fp32,
return_dropout_mask=True,
)
print(f"Actual dropout fraction: {1 - dmask.float().mean().item()}")
x0_scaled_pt = (
x0_scaled_pt.masked_fill(repeat(~x0_mask_batch, "b -> b s d", s=seqlen, d=hidden_size), 0)
* drop_path_scale
)
x0_scaled_ref = (
x0_scaled_ref.masked_fill(repeat(~x0_mask_batch, "b -> b s d", s=seqlen, d=hidden_size), 0)
* drop_path_scale
)
dmask_expanded = torch.zeros_like(x0_pt, dtype=torch.uint8)
dmask_expanded[x0_mask_batch] = dmask
if has_residual:
residual_pt = (
(x0_scaled_pt.float() * dmask_expanded.float()) / (1 - dropout_p) + res_pt.float()
).to(dtype=residual_dtype)
residual_ref = (x0_scaled_ref * dmask_expanded.float()) / (1 - dropout_p) + res_ref
else:
residual_pt = ((x0_scaled_pt.float() * dmask_expanded.float()) / (1 - dropout_p)).to(
dtype=residual_dtype
)
residual_ref = (x0_scaled_ref * dmask_expanded.float()) / (1 - dropout_p)
out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)[out_mask_batch]
out_ref = model_ref(residual_ref)[out_mask_batch]
assert out.dtype == input_dtype
assert residual.dtype == residual_dtype
assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
assert (residual - residual_ref).abs().max() <= 4 * (
residual_pt - residual_ref
).abs().max() + 1e-4
g = torch.randn_like(out) / batch_size
(out_pt * F.sigmoid(residual_pt[out_mask_batch]) + residual_pt.mean(0, keepdim=True)).backward(
g
)
(out * F.sigmoid(residual[out_mask_batch]) + residual.mean(0, keepdim=True)).backward(g)
(
out_ref * F.sigmoid(residual_ref[out_mask_batch].to(dtype=residual_dtype))
+ residual_ref.mean(0, keepdim=True)
).backward(g)
assert (x0.grad - x0_ref.grad[x0_mask_batch]).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad)[
x0_mask_batch
].abs().max() + 1e-4
if has_residual:
assert (res.grad - res_ref.grad).abs().max() <= 4 * (
res_pt.grad - res_ref.grad
).abs().max() + 1e-4
assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (
model_pt.weight.grad - model_ref.weight.grad
).abs().max() + 2e-4
assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (
model_pt.bias.grad - model_ref.bias.grad
).abs().max() + 2e-4
if has_colscale:
assert (colscale.grad - colscale_ref.grad).abs().max() <= 2 * (
colscale_pt.grad - colscale_ref.grad
).abs().max() + 2e-4
@pytest.mark.parametrize("is_rms_norm", [False, True])
# @pytest.mark.parametrize('is_rms_norm', [False])
@pytest.mark.parametrize("tied_norm", [False, True])
# @pytest.mark.parametrize('tied_norm', [False])
@pytest.mark.parametrize("has_residual", [True, False])
# @pytest.mark.parametrize('has_residual', [False])
@pytest.mark.parametrize("has_x1", [True, False])
# @pytest.mark.parametrize('has_x1', [True])
@pytest.mark.parametrize("dropout_p", [0.37, 0.0])
# @pytest.mark.parametrize('dropout_p', [0.0])
@pytest.mark.parametrize("weight_dtype", [torch.float32, torch.float16])
# @pytest.mark.parametrize('weight_dtype', [torch.float16])
@pytest.mark.parametrize(
"input_dtype,residual_dtype",
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
)
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float32)])
@pytest.mark.parametrize(
"hidden_size",
[192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144],
)
# @pytest.mark.parametrize('hidden_size', [256])
def test_dropout_layer_norm_parallel_residual_training(
hidden_size,
input_dtype,
residual_dtype,
weight_dtype,
dropout_p,
has_x1,
has_residual,
tied_norm,
is_rms_norm,
):
if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
pytest.skip() # Not supported
if is_rms_norm and fused_rms_norm_affine is None:
pytest.skip() # We need Apex's FusedRMSNorm to test
our_layer_norm_func = (
dropout_add_layer_norm_parallel_residual
if not is_rms_norm
else dropout_add_rms_norm_parallel_residual
)
device = "cuda"
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol, atol = (1e-3, 1e-4)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
x0_pt = torch.randn(
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
)
x0 = x0_pt.detach().clone().requires_grad_()
x0_ref = x0_pt.detach().clone().float().requires_grad_()
if has_x1:
x1_pt = torch.randn(
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
)
x1 = x1_pt.detach().clone().requires_grad_()
x1_ref = x1_pt.detach().clone().float().requires_grad_()
else:
x1 = None
if has_residual:
res_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
res = res_pt.detach().clone().requires_grad_()
res_ref = res_pt.detach().clone().float().requires_grad_()
else:
res = None
weight0 = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
bias0 = (
torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
if not is_rms_norm
else None
)
weight0_pt = weight0.detach().clone().requires_grad_()
weight0_ref = weight0.detach().clone().float().requires_grad_()
bias0_pt = bias0.detach().clone().requires_grad_() if bias0 is not None else None
bias0_ref = bias0.detach().clone().float().requires_grad_() if bias0 is not None else None
if not tied_norm:
weight1 = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
bias1 = (
torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
if not is_rms_norm
else None
)
weight1_pt = weight1.detach().clone().requires_grad_()
weight1_ref = weight1.detach().clone().float().requires_grad_()
bias1_pt = bias1.detach().clone().requires_grad_() if bias1 is not None else None
bias1_ref = bias1.detach().clone().float().requires_grad_() if bias1 is not None else None
else:
weight1, bias1 = None, None
epsilon = 1e-5
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
out0, out1, dmask0, dmask1 = our_layer_norm_func(
x0,
x1,
res,
weight0,
bias0,
weight1,
bias1,
dropout_p,
epsilon,
residual_in_fp32=residual_in_fp32,
return_dropout_mask=True,
)
assert out0.dtype == input_dtype
if not tied_norm:
assert out1.dtype == input_dtype
print(f"Actual dropout fraction: {1 - dmask0.float().mean().item()}")
if has_residual:
if has_x1:
residual_pt = (
(x0_pt.float() * dmask0.float()) / (1 - dropout_p)
+ (x1_pt.float() * dmask1.float()) / (1 - dropout_p)
+ res_pt.float()
).to(dtype=residual_dtype)
residual_ref = (
(x0_ref * dmask0.float()) / (1 - dropout_p)
+ (x1_ref * dmask1.float()) / (1 - dropout_p)
) + res_ref
else:
residual_pt = ((x0_pt.float() * dmask0.float()) / (1 - dropout_p) + res_pt.float()).to(
dtype=residual_dtype
)
residual_ref = (x0_ref * dmask0.float()) / (1 - dropout_p) + res_ref
else:
if has_x1:
residual_pt = (
(x0_pt.float() * dmask0.float()) / (1 - dropout_p)
+ (x1_pt.float() * dmask1.float()) / (1 - dropout_p)
).to(dtype=residual_dtype)
residual_ref = (x0_ref * dmask0.float()) / (1 - dropout_p) + (
x1_ref * dmask1.float()
) / (1 - dropout_p)
else:
residual_pt = ((x0_pt.float() * dmask0.float()) / (1 - dropout_p)).to(
dtype=residual_dtype
)
residual_ref = (x0_ref * dmask0.float()) / (1 - dropout_p)
if not is_rms_norm:
out0_pt = F.layer_norm(
residual_pt.to(dtype=weight_dtype), (hidden_size,), weight0_pt, bias0_pt, eps=epsilon
).to(dtype=input_dtype)
out0_ref = F.layer_norm(residual_ref, (hidden_size,), weight0_ref, bias0_ref, eps=epsilon)
if not tied_norm:
out1_pt = F.layer_norm(
residual_pt.to(dtype=weight_dtype),
(hidden_size,),
weight1_pt,
bias1_pt,
eps=epsilon,
).to(dtype=input_dtype)
out1_ref = F.layer_norm(
residual_ref, (hidden_size,), weight1_ref, bias1_ref, eps=epsilon
)
else:
out0_pt = fused_rms_norm_affine(
residual_pt.to(dtype=weight_dtype), weight0_pt, (hidden_size,), eps=epsilon
).to(dtype=input_dtype)
out0_ref = fused_rms_norm_affine(residual_ref, weight0_ref, (hidden_size,), eps=epsilon)
if not tied_norm:
out1_pt = fused_rms_norm_affine(
residual_pt.to(dtype=weight_dtype), weight1_pt, (hidden_size,), eps=epsilon
).to(dtype=input_dtype)
out1_ref = fused_rms_norm_affine(residual_ref, weight1_ref, (hidden_size,), eps=epsilon)
assert (out0 - out0_ref).abs().max() <= 4 * (out0_pt - out0_ref).abs().max() + 1e-4
if not tied_norm:
assert (out1 - out1_ref).abs().max() <= 4 * (out1_pt - out1_ref).abs().max() + 1e-4
g0 = torch.randn_like(out0) / batch_size
if tied_norm:
out0.backward(g0)
out0_pt.backward(g0)
out0_ref.backward(g0)
else:
g1 = torch.randn_like(out1) / batch_size
(out0 * g0 + out1 * g1).sum().backward()
(out0_pt * g0 + out1_pt * g1).sum().backward()
(out0_ref * g0 + out1_ref * g1).sum().backward()
assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4
if has_x1:
assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (
x1_pt.grad - x1_ref.grad
).abs().max() + 1e-4
if has_residual:
assert (res.grad - res_ref.grad).abs().max() <= 4 * (
res_pt.grad - res_ref.grad
).abs().max() + 1e-4
assert (weight0.grad - weight0_ref.grad).abs().max() <= 3 * (
weight0_pt.grad - weight0_ref.grad
).abs().max() + 3e-5
if not is_rms_norm:
assert (bias0.grad - bias0_ref.grad).abs().max() <= 2 * (
bias0_pt.grad - bias0_ref.grad
).abs().max() + 3e-5
if not tied_norm:
assert (weight1.grad - weight1_ref.grad).abs().max() <= 3 * (
weight1_pt.grad - weight1_ref.grad
).abs().max() + 3e-5
if not is_rms_norm:
assert (bias1.grad - bias1_ref.grad).abs().max() <= 2 * (
bias1_pt.grad - bias1_ref.grad
).abs().max() + 3e-5
@pytest.mark.parametrize("is_rms_norm", [False, True])
# @pytest.mark.parametrize('is_rms_norm', [False])
@pytest.mark.parametrize("tied_norm", [False, True])
# @pytest.mark.parametrize('tied_norm', [False])
@pytest.mark.parametrize("has_residual", [True, False])
# @pytest.mark.parametrize('has_residual', [False])
@pytest.mark.parametrize("has_x1", [True, False])
# @pytest.mark.parametrize('has_x1', [True])
@pytest.mark.parametrize("dropout_p", [0.37, 0.0])
# @pytest.mark.parametrize('dropout_p', [0.0])
@pytest.mark.parametrize("weight_dtype", [torch.float32, torch.float16])
# @pytest.mark.parametrize('weight_dtype', [torch.float16])
@pytest.mark.parametrize(
"input_dtype,residual_dtype",
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
)
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float32)])
@pytest.mark.parametrize(
"hidden_size",
[192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144],
)
# @pytest.mark.parametrize('hidden_size', [256])
def test_dropout_layer_norm_parallel_residual_prenorm_training(
hidden_size,
input_dtype,
residual_dtype,
weight_dtype,
dropout_p,
has_x1,
has_residual,
tied_norm,
is_rms_norm,
):
if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
pytest.skip() # Not supported
if is_rms_norm and fused_rms_norm_affine is None:
pytest.skip() # We need Apex's FusedRMSNorm to test
our_layer_norm_func = (
dropout_add_layer_norm_parallel_residual
if not is_rms_norm
else dropout_add_rms_norm_parallel_residual
)
device = "cuda"
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol, atol = (1e-3, 1e-4)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
x0_pt = torch.randn(
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
)
x0 = x0_pt.detach().clone().requires_grad_()
x0_ref = x0_pt.detach().clone().float().requires_grad_()
if has_x1:
x1_pt = torch.randn(
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
)
x1 = x1_pt.detach().clone().requires_grad_()
x1_ref = x1_pt.detach().clone().float().requires_grad_()
else:
x1 = None
if has_residual:
res_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
res = res_pt.detach().clone().requires_grad_()
res_ref = res_pt.detach().clone().float().requires_grad_()
else:
res = None
weight0 = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
bias0 = (
torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
if not is_rms_norm
else None
)
weight0_pt = weight0.detach().clone().requires_grad_()
weight0_ref = weight0.detach().clone().float().requires_grad_()
bias0_pt = bias0.detach().clone().requires_grad_() if bias0 is not None else None
bias0_ref = bias0.detach().clone().float().requires_grad_() if bias0 is not None else None
if not tied_norm:
weight1 = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
bias1 = (
torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
if not is_rms_norm
else None
)
weight1_pt = weight1.detach().clone().requires_grad_()
weight1_ref = weight1.detach().clone().float().requires_grad_()
bias1_pt = bias1.detach().clone().requires_grad_() if bias1 is not None else None
bias1_ref = bias1.detach().clone().float().requires_grad_() if bias1 is not None else None
else:
weight1, bias1 = None, None
epsilon = 1e-5
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
out0, out1, residual, dmask0, dmask1 = our_layer_norm_func(
x0,
x1,
res,
weight0,
bias0,
weight1,
bias1,
dropout_p,
epsilon,
prenorm=True,
residual_in_fp32=residual_in_fp32,
return_dropout_mask=True,
)
assert out0.dtype == input_dtype
if not tied_norm:
assert out1.dtype == input_dtype
print(f"Actual dropout fraction: {1 - dmask0.float().mean().item()}")
if has_residual:
if has_x1:
residual_pt = (
(x0_pt.float() * dmask0.float()) / (1 - dropout_p)
+ (x1_pt.float() * dmask1.float()) / (1 - dropout_p)
+ res_pt.float()
).to(dtype=residual_dtype)
residual_ref = (
(x0_ref * dmask0.float()) / (1 - dropout_p)
+ (x1_ref * dmask1.float()) / (1 - dropout_p)
) + res_ref
else:
residual_pt = ((x0_pt.float() * dmask0.float()) / (1 - dropout_p) + res_pt.float()).to(
dtype=residual_dtype
)
residual_ref = (x0_ref * dmask0.float()) / (1 - dropout_p) + res_ref
else:
if has_x1:
residual_pt = (
(x0_pt.float() * dmask0.float()) / (1 - dropout_p)
+ (x1_pt.float() * dmask1.float()) / (1 - dropout_p)
).to(dtype=residual_dtype)
residual_ref = (x0_ref * dmask0.float()) / (1 - dropout_p) + (
x1_ref * dmask1.float()
) / (1 - dropout_p)
else:
residual_pt = ((x0_pt.float() * dmask0.float()) / (1 - dropout_p)).to(
dtype=residual_dtype
)
residual_ref = (x0_ref * dmask0.float()) / (1 - dropout_p)
if not is_rms_norm:
out0_pt = F.layer_norm(
residual_pt.to(dtype=weight_dtype), (hidden_size,), weight0_pt, bias0_pt, eps=epsilon
).to(dtype=input_dtype)
out0_ref = F.layer_norm(residual_ref, (hidden_size,), weight0_ref, bias0_ref, eps=epsilon)
if not tied_norm:
out1_pt = F.layer_norm(
residual_pt.to(dtype=weight_dtype),
(hidden_size,),
weight1_pt,
bias1_pt,
eps=epsilon,
).to(dtype=input_dtype)
out1_ref = F.layer_norm(
residual_ref, (hidden_size,), weight1_ref, bias1_ref, eps=epsilon
)
else:
out0_pt = fused_rms_norm_affine(
residual_pt.to(dtype=weight_dtype), weight0_pt, (hidden_size,), eps=epsilon
).to(dtype=input_dtype)
out0_ref = fused_rms_norm_affine(residual_ref, weight0_ref, (hidden_size,), eps=epsilon)
if not tied_norm:
out1_pt = fused_rms_norm_affine(
residual_pt.to(dtype=weight_dtype), weight1_pt, (hidden_size,), eps=epsilon
).to(dtype=input_dtype)
out1_ref = fused_rms_norm_affine(residual_ref, weight1_ref, (hidden_size,), eps=epsilon)
assert (out0 - out0_ref).abs().max() <= 4 * (out0_pt - out0_ref).abs().max() + 1e-4
if not tied_norm:
assert (out1 - out1_ref).abs().max() <= 4 * (out1_pt - out1_ref).abs().max() + 1e-4
assert (residual - residual_ref).abs().max() <= 4 * (
residual_pt - residual_ref
).abs().max() + 1e-4
g0 = torch.randn_like(out0) / batch_size
if tied_norm:
(out0 * F.sigmoid(residual)).backward(g0)
(out0_pt * F.sigmoid(residual_pt)).backward(g0)
(out0_ref * F.sigmoid(residual_ref)).backward(g0)
else:
g1 = torch.randn_like(out1) / batch_size
(out0 * F.sigmoid(residual) * g0 + out1 * g1).sum().backward()
(out0_pt * F.sigmoid(residual_pt) * g0 + out1_pt * g1).sum().backward()
(out0_ref * F.sigmoid(residual_ref) * g0 + out1_ref * g1).sum().backward()
assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4
if has_x1:
assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (
x1_pt.grad - x1_ref.grad
).abs().max() + 1e-4
if has_residual:
assert (res.grad - res_ref.grad).abs().max() <= 4 * (
res_pt.grad - res_ref.grad
).abs().max() + 1e-4
assert (weight0.grad - weight0_ref.grad).abs().max() <= 3 * (
weight0_pt.grad - weight0_ref.grad
).abs().max() + 3e-5
if not is_rms_norm:
assert (bias0.grad - bias0_ref.grad).abs().max() <= 2 * (
bias0_pt.grad - bias0_ref.grad
).abs().max() + 3e-5
if not tied_norm:
assert (weight1.grad - weight1_ref.grad).abs().max() <= 3 * (
weight1_pt.grad - weight1_ref.grad
).abs().max() + 3e-5
if not is_rms_norm:
assert (bias1.grad - bias1_ref.grad).abs().max() <= 2 * (
bias1_pt.grad - bias1_ref.grad
).abs().max() + 3e-5
def test_dropout_layer_norm_randomness():
hidden_size = 256
dtype = torch.float32
dropout_p = 0.1
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
x0 = torch.randn(
batch_size, seqlen, hidden_size, device=device, dtype=dtype, requires_grad=True
)
res = torch.randn_like(x0, dtype=dtype, requires_grad=True)
model = DropoutAddLayerNorm(hidden_size, p=dropout_p, device=device, dtype=dtype)
torch.random.manual_seed(42)
_, dmask0 = dropout_add_layer_norm(
x0, res, model.weight, model.bias, model.p, model.eps, return_dropout_mask=True
)
# Subsequent call should have a different dropout mask
_, dmask1 = dropout_add_layer_norm(
x0, res, model.weight, model.bias, model.p, model.eps, return_dropout_mask=True
)
torch.random.manual_seed(42)
# Resetting the seed, should get the same dropout mask
_, dmask2 = dropout_add_layer_norm(
x0, res, model.weight, model.bias, model.p, model.eps, return_dropout_mask=True
)
assert not torch.equal(dmask0, dmask1)
assert torch.equal(dmask0, dmask2)