################################################################################################# # # Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Utilities for emitting Conv2d kernels """ import enum import logging import os.path import shutil from string import Template try: import builtins if hasattr(builtins, "CUTLASS_IGNORE_PACKAGE") and CUTLASS_IGNORE_PACKAGE == True: raise ImportError("Disabling attempt to import cutlass_library") from cutlass_library.library import * from cutlass_library.conv3x_emitter import EmitConv3xInstance, EmitConv3xIncludes except ImportError: from library import * from conv3x_emitter import EmitConv3xInstance, EmitConv3xIncludes _LOGGER = logging.getLogger(__name__) ################################################################################################### # class Conv2dOperation: # def __init__(self, conv_kind, iterator_algorithm, arch, tile_description, A, B, C, element_epilogue, \ stride_support, epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity1, \ group_mode = GroupMode.NoneGroup): self.operation_kind = OperationKind.Conv2d self.arch = arch self.tile_description = tile_description self.conv_kind = conv_kind self.A = A self.B = B self.C = C self.element_epilogue = element_epilogue self.epilogue_functor = epilogue_functor self.iterator_algorithm = iterator_algorithm self.stride_support = stride_support self.swizzling_functor = swizzling_functor self.group_mode = group_mode # def is_complex(self): complex_operators = [ MathOperation.multiply_add_complex, MathOperation.multiply_add_complex_gaussian ] return self.tile_description.math_instruction.math_operation in complex_operators # def is_mixed_input(self): return self.A.element != self.B.element # def accumulator_type(self): accum = self.tile_description.math_instruction.element_accumulator if self.is_complex(): return get_complex_from_real(accum) return accum # def core_name(self): ''' The basic operation kind is prefixed with a letter indicating the accumulation type. ''' intermediate_type = '' if self.tile_description.math_instruction.opcode_class == OpcodeClass.TensorOp: inst_shape = "%d%d%d" % tuple(self.tile_description.math_instruction.instruction_shape) if self.tile_description.math_instruction.element_a != self.A.element and \ self.tile_description.math_instruction.element_a != self.accumulator_type(): intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] else: inst_shape = '' return "%s%s%s%s_%s" % (ShortDataTypeNames[self.accumulator_type()], \ inst_shape, intermediate_type, ConvKindNames[self.conv_kind], IteratorAlgorithmNames[self.iterator_algorithm]) # def extended_name(self): ''' Append data types if they differ from compute type. ''' if self.C.element != self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${element_c}_${core_name}_${element_a}" elif self.C.element == self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = SubstituteTemplate(extended_name, { 'element_a': DataTypeNames[self.A.element], 'element_c': DataTypeNames[self.C.element], 'core_name': self.core_name() }) return extended_name # def layout_name(self): return "%s" % (ShortLayoutTypeNames[self.A.layout]) # def configuration_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] threadblock = self.tile_description.procedural_name() # grouped conv if self.group_mode != GroupMode.NoneGroup: group_conv_name = f"{GroupModeNames[self.group_mode]}_" else: group_conv_name = "" if self.stride_support == StrideSupport.Unity: configuration_name = "cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}_unity_stride_${group_conv_name}align${alignment}" else: configuration_name = "cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}_${group_conv_name}align${alignment}" return SubstituteTemplate( configuration_name, { 'opcode_class': opcode_class_name, 'extended_name': self.extended_name(), 'threadblock': threadblock, 'layout': self.layout_name(), 'alignment': "%d" % self.A.alignment, 'group_conv_name': group_conv_name } ) # def procedural_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' return self.configuration_name() ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### class EmitConv2dInstance: def __init__(self): # Emitter for CUTLASS 3 convolution operations self.conv3x_emitter = EmitConv3xInstance() self.template = """ // Conv2d${conv_kind_name} ${iterator_algorithm_name} kernel instance "${operation_name}" using ${operation_name}_base = typename cutlass::conv::kernel::DefaultConv2d${conv_kind_name}< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k} >, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, // cutlass::gemm::threadblock::GemmSplitKIdentityThreadblockSwizzle<>, ${stages}, ${math_operator}, ${iterator_algorithm}, ${stride_support}, ${align_a}, ${align_b} >::Kernel; """ self.template_group_conv = """ // Conv2d${conv_kind_name} ${iterator_algorithm_name} kernel instance "${operation_name}" using ${operation_name}_base = typename cutlass::conv::kernel::DefaultConv2dGroup${conv_kind_name}< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k} >, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, // cutlass::gemm::threadblock::GemmSplitKIdentityThreadblockSwizzle<>, ${stages}, ${math_operator}, ${group_mode}, ${iterator_algorithm}, ${stride_support}, ${align_a}, ${align_b} >::Kernel; """ self.template_depthwise_direct_conv = """ // Conv2d${conv_kind_name} ${iterator_algorithm_name} kernel instance "${operation_name}" using ${operation_name}_base = typename cutlass::conv::kernel::DefaultDepthwiseDirect2dConv${conv_kind_name}< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::conv::TensorNHWCShape<${threadblock_output_shape_n}, ${threadblock_output_shape_p}, ${threadblock_output_shape_q}, ${groups_per_cta}>, cutlass::MatrixShape<${filter_shape_r}, ${filter_shape_s}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue}, cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling >, cutlass::conv::threadblock::DepthwiseDirect2dConvIdentityThreadblockSwizzle< 1, ${threadblock_output_shape_n}, ${threadblock_output_shape_p}, ${threadblock_output_shape_q}>, ${stages}, ${math_operator}, ${iterator_algorithm}, ${stride_support}, cutlass::MatrixShape<${stride_r}, ${stride_s}>, cutlass::MatrixShape<${dilation_r}, ${dilation_s}> >::Kernel; """ def arch_number_to_type(self, arch: int): return f"cutlass::arch::Sm{arch}" def emit(self, operation): _LOGGER.debug("*** EmitConv2dInstance::emit") _LOGGER.debug("*** operation: procedural_name()=" + operation.procedural_name()) if hasattr(operation, 'is_3x') and operation.is_3x: _LOGGER.debug("*** CUTLASS 3 operation") return self.conv3x_emitter.emit(operation) _LOGGER.debug("*** CUTLASS 2 operation") warp_shape = [int(operation.tile_description.threadblock_shape[idx] / operation.tile_description.warp_count[idx]) for idx in range(3)] epilogue_vector_length = int(min(operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element]) values = { 'operation_name': operation.procedural_name(), 'conv_kind': ConvKindTag[operation.conv_kind], 'conv_kind_name': ConvKindNames[operation.conv_kind].capitalize(), 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[operation.A.layout], 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[operation.B.layout], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_vector_length': str(epilogue_vector_length), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'iterator_algorithm': IteratorAlgorithmTag[operation.iterator_algorithm], 'iterator_algorithm_name': IteratorAlgorithmNames[operation.iterator_algorithm].capitalize(), 'stride_support': StrideSupportTag[operation.stride_support], 'math_operator': 'cutlass::arch::OpMultiplyAddComplex' if operation.is_complex() else \ MathOperationTag[operation.tile_description.math_instruction.math_operation], 'align_a': str(operation.A.alignment), 'align_b': str(operation.B.alignment), } if operation.group_mode == GroupMode.NoneGroup: _LOGGER.debug("*** group_mode=NoneGroup") return SubstituteTemplate(self.template, values) elif operation.group_mode == GroupMode.Depthwise: _LOGGER.debug("*** group_mode=Depthwise") values['group_mode'] = GroupModeTag[operation.group_mode] # Setup other template params values['threadblock_output_shape_n'] = str(operation.tile_description.threadblock_output_shape[0]) values['threadblock_output_shape_p'] = str(operation.tile_description.threadblock_output_shape[1]) values['threadblock_output_shape_q'] = str(operation.tile_description.threadblock_output_shape[2]) values['groups_per_cta'] = str(operation.tile_description.threadblock_output_shape[3]) values['filter_shape_r'] = str(operation.tile_description.filter_shape[0]) values['filter_shape_s'] = str(operation.tile_description.filter_shape[1]) values['stride_r'] = str(operation.tile_description.stride[0]) values['stride_s'] = str(operation.tile_description.stride[1]) values['dilation_r'] = str(operation.tile_description.dilation[0]) values['dilation_s'] = str(operation.tile_description.dilation[1]) return SubstituteTemplate(self.template_depthwise_direct_conv, values) else: _LOGGER.debug("*** group_mode=" + GroupModeTag[operation.group_mode]) values['group_mode'] = GroupModeTag[operation.group_mode] return SubstituteTemplate(self.template_group_conv, values) ################################################################################################### # # Generator functions for all layouts # ################################################################################################### # def GenerateConv2dTensorOp(manifest, tile_descriptions, min_cc, align = 128): _LOGGER.debug("*** GenerateConv2dTensorOp") for tile in tile_descriptions: for conv_kind in [ConvKind.Fprop, ConvKind.Dgrad, ConvKind.Wgrad]: if conv_kind == ConvKind.Fprop or (tile.math_instruction.element_accumulator in [DataType.f16, DataType.f32]): # output_types = [tile.math_instruction.element_a, tile.math_instruction.element_accumulator] \ if DataTypeSize[tile.math_instruction.element_accumulator] == 32 \ else [tile.math_instruction.element_accumulator,] for output_type in output_types: A = TensorDescription(tile.math_instruction.element_a, LayoutType.TensorNHWC, int(align / DataTypeSize[tile.math_instruction.element_a])) B = TensorDescription(tile.math_instruction.element_b, LayoutType.TensorNHWC, int(align / DataTypeSize[tile.math_instruction.element_b])) C = TensorDescription(output_type, LayoutType.TensorNHWC, max(1, int(align / DataTypeSize[output_type]))) manifest.append(Conv2dOperation(conv_kind, min_cc, tile, A, B, C, tile.math_instruction.element_accumulator)) class EmitConv2dIncludes: '''Emit includes that are specific to the operation.''' def __init__(self): self.includes = ['conv2d_operation.h'] self.emitter_3x = EmitConv3xIncludes() def operation_is_3x(self, operation) -> bool: """Whether operation is a CUTLASS 3 convolution (as opposed to CUTLASS 2)""" return hasattr(operation, 'is_3x') and operation.is_3x def emit(self, operation) -> str: if self.operation_is_3x(operation): return self.emitter_3x.emit(operation) return '\n'.join(f"#include \"{incl}\"" for incl in self.includes) + \ "\n\n///////////////////////////////////////////////////////////////////////////////////////////////////" ################################################################################################### # # Emitters functions for all targets # ################################################################################################### class EmitConv2dConfigurationLibrary: def __init__(self, operation_path, configuration_name): self.configuration_name = configuration_name self.configuration_path = os.path.join(operation_path, "%s.cu" % configuration_name) self.instance_emitter = EmitConv2dInstance() self.includes_emitter = EmitConv2dIncludes() self.header_template = """ /* Generated by conv2d_operation.py - Do not edit. */ /////////////////////////////////////////////////////////////////////////////////////////////////// #include "cutlass/cutlass.h" #include "cutlass/library/library.h" #include "cutlass/library/manifest.h" #include "library_internal.h" """ self.instance_template = """ ${stub_begin} ${operation_instance} // Derived class struct ${operation_name} : public ${operation_name}_base { }; ${stub_end} /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.configuration_header = """ namespace cutlass { namespace library { // Initialize all instances void initialize_${configuration_name}(Manifest &manifest) { """ self.configuration_instance = """${stub_begin} using Operation_${operation_name} = cutlass::conv::device::${kernel_name}< ${operation_name}>; manifest.append(new cutlass::library::${operation_wrapper}< Operation_${operation_name} >( "${operation_name}" )); ${stub_end} """ self.configuration_epilogue = "}\n" self.epilogue_template = """ /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////// """ def operation_is_3x(self, operation): """Whether operation is a CUTLASS 3 convolution (as opposed to CUTLASS 2)""" return hasattr(operation, 'is_3x') and operation.is_3x def __enter__(self): """ Open the configuration_file, and write the "header" C++ code to it. The "header" consists of a comment (that this is generated code, so it should not be edited), and includes that are common to all kinds of kernels. """ _LOGGER.debug('*** EmitConv2dConfigurationLibrary::__enter__') _LOGGER.debug('*** configuration_path (file to write): ' + str(self.configuration_path)) _LOGGER.debug('*** configuration_name: ' + self.configuration_name) self.configuration_file = open(self.configuration_path, "w") self.configuration_file.write(SubstituteTemplate(self.header_template, { 'configuration_name': self.configuration_name })) self.operations = [] return self def emit(self, operation): """ Write three pieces of C++ code to the configuration_file (that was opened by the __enter__ method above): 1. the header includes that are specific to the operation (CUTLASS 2 vs. CUTLASS 3); 2. the "operation instance" (a "using" declaration ending in "_base"); and 3. the "operation name" (declaration and definition of a derived class of the above operation instance). The "using" declaration turns a C++ class name, possibly namespace-qualified, possibly also with angle brackets, into a C-style, easily demangled identifier. """ _LOGGER.debug('*** EmitConv2dConfigurationLibrary::emit') _LOGGER.debug('*** operation.procedural_name(): ' + operation.procedural_name()) self.operations.append(operation) self.configuration_file.write(self.includes_emitter.emit(operation)) stub_begin = '' stub_end = '' # It can be useful to stub (comment) out instantiations for testing. # In this case, one need only set is_stub to True. is_stub = False if is_stub: stub_begin = "// STUB for now\n#if 0" stub_end = '#endif // 0' self.configuration_file.write(Template(self.instance_template).substitute({ 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name(), 'operation_instance': self.instance_emitter.emit(operation), 'stub_begin': stub_begin, 'stub_end': stub_end })) def __exit__(self, exception_type, exception_value, traceback): """ Write the rest of the C++ code to the configuration_file, and close the file. The "rest of the C++ code" has the following components. 1. Configuration header: Open the namespace(s), and open the definition of the "initialize_${configuration_name}" registration function that registers the operation with the Manifest. ("Registration" helps turn C++ compile-time polymorphism (via template parameters) into a run-time choice of parameters.) 2. Configuration instance: In the body of the registration function, make a "using" declaration Operation_${operation_name} for the operation type (which uses operation_name as its template argument). Then, tell the manifest about the operation via a "manifest.append" call. The argument of the call is a new instance of "SomethingOperation" (replace Something with a specific name). 3. Configuration epilogue: Close the definition of the registration function. 4. Epilogue template: Close the namespace(s). """ _LOGGER.debug('*** EmitConv2dConfigurationLibrary::__exit__') _LOGGER.debug('*** configuration_path (file to write): ' + str(self.configuration_path)) _LOGGER.debug('*** configuration_name: ' + self.configuration_name) self.configuration_file.write(SubstituteTemplate(self.configuration_header, { 'configuration_name': self.configuration_name })) for operation in self.operations: stub_begin = '' stub_end = '' # It can be useful to stub (comment) out instantiations for testing. # In this case, one need only set is_stub to True. is_stub = False if is_stub: stub_begin = "// STUB for now\n#if 0" stub_end = "#endif // 0" if operation.group_mode == GroupMode.Depthwise: kernel_name = 'DirectConvolution' operation_wrapper = 'DirectConv2dOperation' else: kernel_name = 'ImplicitGemmConvolution' operation_wrapper = 'Conv2dOperation' if self.operation_is_3x(operation): kernel_name = 'ConvUniversalAdapter' operation_wrapper = 'ConvOperation3x' self.configuration_file.write(SubstituteTemplate(self.configuration_instance, { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name(), 'kernel_name': kernel_name, 'operation_wrapper': operation_wrapper, 'stub_begin': stub_begin, 'stub_end': stub_end })) self.configuration_file.write(self.configuration_epilogue) self.configuration_file.write(self.epilogue_template) self.configuration_file.close() ################################################################################################### ###################################################################################################