################################################################################################# # # Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Utilities for emitting CUTLASS >= 3 convolution kernels """ import enum import os.path import shutil import logging from string import Template try: import builtins if hasattr(builtins, "CUTLASS_IGNORE_PACKAGE") and CUTLASS_IGNORE_PACKAGE == True: raise ImportError("Disabling attempt to import cutlass_library") from cutlass_library.library import * except ImportError: from library import * _LOGGER = logging.getLogger(__name__) ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### class EmitConv3xInstance: def __init__(self): _LOGGER.debug("*** EmitConv3xInstance::__init__") # Define epilogue type first, so that the mainloop type # can use it with StageCountAutoCarveout. self.template = """ // CUTLASS >= 3 convolution ${conv_kind_name} kernel instance "${operation_name}" using ${operation_name}_epilogue = typename cutlass::epilogue::collective::CollectiveBuilder< ${arch}, ${opcode_class_epi}, ${tile_shape}, // tile shape ${cluster_shape}, // cluster shape ${epi_tile_mn}, ${element_accumulator}, ${element_compute}, ${element_c}, ${layout_c}, 128 / cute::sizeof_bits_v<${element_c}>, ${element_d}, ${layout_d}, 128 / cute::sizeof_bits_v<${element_d}>, ${epilogue_schedule} // , class FusionOpOrCallbacks = cutlass::epilogue::fusion::LinearCombination >::CollectiveOp; using ${operation_name}_mainloop = typename cutlass::conv::collective::CollectiveBuilder< ${arch}, ${opcode_class_main}, ${conv_kind}, // kFprop, kDgrad, or kWgrad ${element_a}, ${layout_a}, 128 / cute::sizeof_bits_v<${element_a}>, ${element_b}, ${layout_b}, 128 / cute::sizeof_bits_v<${element_b}>, ${element_accumulator}, ${tile_shape}, // tile shape ${cluster_shape}, // cluster shape ${stages}, ${kernel_schedule} >::CollectiveOp; // Unit tests call this "ConvKernel". // Conv operator ${operation_name} using ${operation_name}_base = cutlass::conv::kernel::ConvUniversal< ${operation_name}_mainloop, ${operation_name}_epilogue, ${tile_scheduler} >; """ def arch_number_to_type(self, arch: int) -> str: return f"cutlass::arch::Sm{arch}" def tile_shape(self, operation) -> str: # For all three kinds of convolutions, the tile shape's K mode # differs from GEMM in that needs to be wrapped in a Shape. # For Wgrad convolutions specifically, # the N tile shape also needs to be wrapped in a Shape. m_template = 'cute::_${tile_shape_m}' if operation.conv_kind == ConvKind.Wgrad: n_template = 'cute::Shape' else: n_template = 'cute::_${tile_shape_n}' k_template = 'cute::Shape' tile_shape_template = f'cute::Shape<{m_template}, {n_template}, {k_template}>' values = { 'tile_shape_m': operation.tile_description.tile_shape[0], 'tile_shape_n': operation.tile_description.tile_shape[1], 'tile_shape_k': operation.tile_description.tile_shape[2] } return Template(tile_shape_template).substitute(values) def cluster_shape(self, operation) -> str: m_template = 'cute::_${cluster_shape_m}' n_template = 'cute::_${cluster_shape_n}' k_template = 'cute::_${cluster_shape_k}' cluster_shape_template = f'cute::Shape<{m_template}, {n_template}, {k_template}>' values = { 'cluster_shape_m': operation.tile_description.cluster_shape[0], 'cluster_shape_n': operation.tile_description.cluster_shape[1], 'cluster_shape_k': operation.tile_description.cluster_shape[2], } return Template(cluster_shape_template).substitute(values) def stage_count(self, operation) -> str: # stages == 0 tells builder to pick the number of stages automatically namespace_prefix = 'cutlass::conv::collective::' if operation.tile_description.stages > 0: return f"{namespace_prefix}StageCount<{str(operation.tile_description.stages)}>" else: return f"{namespace_prefix}StageCountAutoCarveout" def emit(self, operation) -> str: _LOGGER.debug("*** EmitConv3xInstance::emit") _LOGGER.debug("*** operation: procedural_name()=" + operation.procedural_name()) # Identify the operation as CUTLASS 3 by its is_3x field if (not hasattr(operation, 'is_3x')) or (not operation.is_3x): raise RuntimeError("operation must be a CUTLASS 3 operation") epi_tile_mn = "cutlass::epilogue::collective::EpilogueTileAuto" opcode_class_main = OpcodeClassTag[operation.tile_description.math_instruction.opcode_class] opcode_class_epi = opcode_class_main tile_shape = operation.tile_description.tile_shape warp_count = operation.tile_description.warp_count epilogue_schedule = EpilogueScheduleTag[operation.epilogue_schedule] # KernelScheduleTag and TileSchedulerTag both hard-code the # namespace qualification of KernelScheduleAuto as # "cutlass::gemm::collective::" (unless the tag is 'void'). # # For TileSchedulerTag, this namespace is fine, since CUTLASS 3 # convolutions use the same tile schedulers (from the same # cutlass::gemm::collective namespace) as GEMMs. kernel_schedule = KernelScheduleTag[operation.kernel_schedule].replace('gemm::', 'conv::') tile_scheduler = TileSchedulerTag[operation.tile_scheduler] opcode_class = OpcodeClassTag[operation.tile_description.math_instruction.opcode_class] values = { 'operation_name': operation.procedural_name(), 'conv_kind': ConvKindTag[operation.conv_kind], 'conv_kind_name': ConvKindNames[operation.conv_kind].capitalize(), 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[operation.A.layout], 'align_a': int(operation.A.alignment), 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[operation.B.layout], 'align_b': int(operation.B.alignment), 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'align_c': int(operation.C.alignment), 'element_d': DataTypeTag[operation.D.element], 'layout_d': LayoutTag[operation.D.layout], 'align_d': int(operation.D.alignment), 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': opcode_class, 'arch': self.arch_number_to_type(operation.arch), 'tile_shape': self.tile_shape(operation), 'cluster_shape': self.cluster_shape(operation), 'opcode_class_epi': opcode_class_epi, 'opcode_class_main': opcode_class_main, 'epi_tile_mn': epi_tile_mn, 'stages': self.stage_count(operation), 'kernel_schedule': kernel_schedule, 'epilogue_schedule': epilogue_schedule, 'tile_scheduler': tile_scheduler, 'element_compute': DataTypeTag[operation.element_compute] } return Template(self.template).substitute(values) class EmitConv3xIncludes: def __init__(self): _LOGGER.debug("*** EmitConv3xIncludes::__init__") self.includes = ['conv_operation_3x.hpp', 'cutlass/conv/device/conv_universal_adapter.hpp', 'cutlass/conv/kernel/conv_universal.hpp', 'cutlass/conv/collective/collective_builder.hpp', 'cutlass/epilogue/collective/collective_builder.hpp'] def emit(self, operation) -> str: _LOGGER.debug("*** EmitConv3xIncludes::emit") return '\n'.join(f"#include \"{incl}\"" for incl in self.includes) + \ "\n\n///////////////////////////////////////////////////////////////////////////////////////////////////"