################################################################################################# # # Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Functions for manipulating IntTuples """ from functools import reduce from itertools import chain from typing import Union from .typing import Integer def is_int(x): return isinstance(x, Integer) def is_tuple(x): return isinstance(x, tuple) def flatten(t): if is_tuple(t): if len(t) == 0: return () else: return tuple(i for a in t for i in flatten(a)) else: return (t,) def signum(a): return bool(a > 0) - bool(a < 0) def product(a): if is_tuple(a): return reduce(lambda val,elem : val*product(elem), a, 1) else: return a def inner_product(a, b): if is_tuple(a): # tuple tuple assert len(a) == len(b) return sum(inner_product(x,y) for x,y in zip(a,b)) else: # "int" "int" assert not is_tuple(b) return a * b def tuple_max(a): if is_tuple(a): return max(tuple_max(x) for x in a) else: return a def elem_scale(a, b): if is_tuple(a): if is_tuple(b): # tuple tuple assert len(a) == len(b) return tuple(elem_scale(x,y) for x,y in zip(a,b)) else: # tuple "int" assert False # Error else: if is_tuple(b): # "int" tuple return elem_scale(a, product(b)) else: # "int" "int" return a * b # Inclusive prefix ceil div with output congruent to input a def shape_div(a, b): if is_tuple(a): if is_tuple(b): # tuple tuple assert len(a) == len(b) return tuple(shape_div(x,y) for x,y in zip(a,b)) else: # tuple "int" #r = [shape_div(a[0],b)] + [shape_div(a[i],b := shape_div(b, product(a[i-1]))) for i in range(1,len(a))] r = [] for v in a: r.append(shape_div(v,b)) b = shape_div(b,product(v)) return tuple(r) else: if is_tuple(b): # "int" tuple return shape_div(a, product(b)) else: # "int" "int" assert a % b == 0 or b % a == 0 #return -(-a // b) # Python exclusive impl: "//" is always floor div if a % b == 0: return a // b else: return signum(a*b) # Exclusive prefix product with output congruent to input a def prefix_product(a, init=1): if is_tuple(a): if is_tuple(init): # tuple tuple assert len(a) == len(init) return tuple(prefix_product(x,i) for x,i in zip(a,init)) else: # tuple "int" #r = [prefix_product(a[0],init)] + [prefix_product(a[i],init := init * product(a[i-1])) for i in range(1,len(a))] r = [] for v in a: r.append(prefix_product(v,init)) init = init * product(v) return tuple(r) else: if is_tuple(init): # "int" tuple assert False # Error else: # "int" "int" return init def idx2crd(idx, shape, stride=None): if stride is None: stride = prefix_product(shape) if is_tuple(idx): if is_tuple(shape): # tuple tuple tuple assert len(idx) == len(shape) and len(idx) == len(stride) return tuple(idx2crd(i, s, d) for i, s, d in zip(idx,shape,stride)) else: # tuple "int" "int" assert False # Error else: if is_tuple(shape): # "int" tuple tuple assert len(shape) == len(stride) return tuple(idx2crd(idx, s, d) for s,d in zip(shape,stride)) else: # "int" "int" "int" return (idx // stride) % shape def crd2idx(crd, shape, stride=None): if stride is None: stride = prefix_product(shape) if is_tuple(crd): if is_tuple(shape): # tuple tuple tuple assert len(crd) == len(shape) and len(crd) == len(stride) return sum(crd2idx(c, s, d) for c, s, d in zip(crd, shape, stride)) else: # tuple "int" "int" assert False, f"crd={crd}, shape={shape}" # Error else: if crd is None: crd = 0 if is_tuple(shape): # "int" tuple tuple assert len(shape) == len(stride) result = 0 for i in range(len(shape)-1): result += crd2idx(crd % product(shape[i]), shape[i], stride[i]) crd = crd // product(shape[i]) return result + crd2idx(crd, shape[-1], stride[-1]) else: # "int" "int" "int" return crd * stride # Transform crd into the dst_shape's iteration space def crd2crd(crd, dst_shape, src_shape=None): if is_tuple(crd): if is_tuple(dst_shape): # tuple tuple assert len(crd) == len(dst_shape) return tuple(crd2crd(x, y) for x, y in zip(crd,dst_shape)) else: # tuple "int" # Ambiguous unless we have src_shape assert src_shape is not None return crd2idx(crd, src_shape) else: if is_tuple(dst_shape): # "int" tuple return idx2crd(crd, dst_shape) else: # "int" "int" assert crd < dst_shape return crd # Filter trg according to crd: keep only elements of trg that are paired with None def slice_(crd: Union[None, tuple, int], trg: Union[tuple, int]): if is_tuple(crd): if is_tuple(trg): # tuple tuple assert len(crd) == len(trg) # match C++ behavior of `filter_tuple` using `tuple_cat(...)` return tuple(chain(*filter(lambda x: x != (), [slice_(c, s) for c, s in zip(crd, trg)]))) else: assert False # tuple "int" : Error elif crd is None: # match C++ behavior `return cute::tuple{b};` return (trg,) else: return () # Determine if None appears at any of an int_tuples' terminals def has_none(a: Union[None, tuple, int]): if is_tuple(a): return any(has_none(v) for v in a) else: return a is None