/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM */ #pragma once #include "cutlass/gemm/thread/mma.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/gemm.h" namespace test { namespace gemm { namespace thread { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Thread-level matrix multiply-accumulate template __global__ void kernel( typename Mma::ElementC *D, typename Mma::ElementA const *A, typename Mma::ElementB const *B, typename Mma::ElementC const *C) { auto ptr_D = reinterpret_cast *>(D); auto ptr_A = reinterpret_cast const *>(A); auto ptr_B = reinterpret_cast const *>(B); auto ptr_C = reinterpret_cast const *>(C); Mma mma; auto a = *ptr_A; auto b = *ptr_B; auto c = *ptr_C; cutlass::Array d; mma(d, a, b, c); *ptr_D = d; } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix product template < /// Size of the Gemm problem - concept: gemm::GemmShape<> typename Shape, /// Data type of A elements typename ElementA, /// Layout of A matrix (concept: MatrixLayout) typename LayoutA, /// Data type of B elements typename ElementB, /// Layout of B matrix (concept: MatrixLayout) typename LayoutB, /// Element type of C matrix typename ElementC, /// Layout of C matrix (concept: MatrixLayout) typename LayoutC > struct Testbed { /// Thread-level matrix multiply-accumulate operator using Mma = cutlass::gemm::thread::Mma< Shape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC >; // // Data members // cutlass::HostTensor tensor_A; cutlass::HostTensor tensor_B; cutlass::HostTensor tensor_C; cutlass::HostTensor tensor_D_computed; cutlass::HostTensor tensor_D_reference; // // Methods // /// Allocates workspace in device memory Testbed() { tensor_A.reset(cutlass::make_Coord(Shape::kM, Shape::kK)); tensor_B.reset(cutlass::make_Coord(Shape::kK, Shape::kN)); tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false); } /// Runs the test bool run() { // // initialize device memory // cutlass::reference::host::BlockFillSequential( tensor_A.host_data(), tensor_A.capacity() ); cutlass::reference::host::BlockFillSequential( tensor_B.host_data(), tensor_B.capacity(), ElementB(1), ElementB(2) ); cutlass::reference::host::TensorFill( tensor_C.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_computed.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_reference.host_view(), ElementC(0) ); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D_computed.sync_device(); // launch kernel kernel<<< dim3(1, 1), dim3(1, 1, 1) >>>( tensor_D_computed.device_data(), tensor_A.device_data(), tensor_B.device_data(), tensor_C.device_data()); // verify no errors cudaError_t result = cudaDeviceSynchronize(); EXPECT_EQ(result, cudaSuccess) << "CUDA ERROR: " << cudaGetErrorString(result); if (result != cudaSuccess) { return false; } tensor_D_computed.sync_host(); // // Reference implementation // //tensor_D_reference.fill(tensor_C.host_view()); cutlass::reference::host::Gemm reference_gemm; reference_gemm( {Shape::kM, Shape::kN, Shape::kK}, ElementC(1), tensor_A.host_ref(), tensor_B.host_ref(), ElementC(0), tensor_D_reference.host_ref() ); // // Verify equivalence // // compare bool passed = cutlass::reference::host::TensorEquals( tensor_D_computed.host_view(), tensor_D_reference.host_view() ); EXPECT_TRUE(passed) << "A:\n" << tensor_A.host_view() << "\n\n" << "B:\n" << tensor_B.host_view() << "\n\n" << "C:\n" << tensor_C.host_view() << "\n\n" << "Reference:\n" << tensor_D_reference.host_view() << "\n\n" << "Computed:\n" << tensor_D_computed.host_view() << std::endl; return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace thread } // namespace gemm } // namespace test