/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /* \file \brief Defines operations for all TRMM operation kinds in CUTLASS Library. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/gemm/device/trmm.h" #include "cutlass/gemm/kernel/default_trmm_universal.h" #include "cutlass/gemm/kernel/trmm_universal.h" #include "cutlass/library/library.h" #include "library_internal.h" /////////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace library { /////////////////////////////////////////////////////////////////////////////////////////////////// template class TrmmOperationBase : public Operation { public: using Operator = Operator_; using ElementA = typename Operator::ElementA; using LayoutA = typename Operator::LayoutA; static SideMode const kSideMode = Operator::kSideMode; static FillMode const kFillMode = Operator::kFillMode; static DiagType const kDiagType = Operator::kDiagType; using ElementB = typename Operator::ElementB; using LayoutB = typename Operator::LayoutB; using ElementC = typename Operator::ElementC; using LayoutC = typename Operator::LayoutC; using ElementAccumulator = typename Operator::ElementAccumulator; using ElementCompute = typename Operator::EpilogueOutputOp::ElementCompute; using OperatorArguments = typename Operator::Arguments; protected: /// TrmmDescription description_; public: /// Constructor TrmmOperationBase(char const *name = "unknown_trmm") { description_.name = name; description_.provider = Provider::kCUTLASS; description_.kind = OperationKind::kTrmm; description_.trmm_kind = TrmmKind::kUniversal; description_.side_mode = kSideMode; description_.fill_mode = kFillMode; description_.diag_type = kDiagType; description_.tile_description.threadblock_shape = make_Coord( Operator::ThreadblockShape::kM, Operator::ThreadblockShape::kN, Operator::ThreadblockShape::kK); description_.tile_description.threadblock_stages = Operator::kStages; description_.tile_description.warp_count = make_Coord( Operator::TrmmKernel::WarpCount::kM, Operator::TrmmKernel::WarpCount::kN, Operator::TrmmKernel::WarpCount::kK); description_.tile_description.math_instruction.instruction_shape = make_Coord( Operator::InstructionShape::kM, Operator::InstructionShape::kN, Operator::InstructionShape::kK); description_.tile_description.math_instruction.element_accumulator = NumericTypeMap::kId; description_.tile_description.math_instruction.opcode_class = OpcodeClassMap::kId; description_.tile_description.math_instruction.math_operation = MathOperationMap::kId; description_.tile_description.minimum_compute_capability = ArchMap::kMin; description_.tile_description.maximum_compute_capability = ArchMap::kMax; description_.A = make_TensorDescription(Operator::kAlignmentA); description_.B = make_TensorDescription(Operator::kAlignmentB); description_.D = make_TensorDescription(Operator::kAlignmentC); description_.element_epilogue = NumericTypeMap::kId; description_.split_k_mode = SplitKMode::kNone; description_.transform_A = ComplexTransformMap::kId; } /// Returns the description of the TRMM operation virtual OperationDescription const & description() const { return description_; } }; /////////////////////////////////////////////////////////////////////////////////////////////////// template class TrmmOperation : public TrmmOperationBase { public: using Operator = Operator_; using ElementA = typename Operator::ElementA; using LayoutA = typename Operator::LayoutA; static SideMode const kSideMode = Operator::kSideMode; static FillMode const kFillMode = Operator::kFillMode; static DiagType const kDiagType = Operator::kDiagType; using ElementB = typename Operator::ElementB; using LayoutB = typename Operator::LayoutB; using ElementC = typename Operator::ElementC; using LayoutC = typename Operator::LayoutC; using ElementAccumulator = typename Operator::ElementAccumulator; using ElementCompute = typename Operator::EpilogueOutputOp::ElementCompute; using OperatorArguments = typename Operator::Arguments; public: /// Constructor TrmmOperation(char const *name = "unknown_trmm"): TrmmOperationBase(name) { this->description_.trmm_kind = TrmmKind::kUniversal; } protected: /// Constructs the arguments structure given the configuration and arguments static Status construct_arguments_( OperatorArguments &operator_args, TrmmConfiguration const *configuration) { //operator_args.mode = configuration->mode; operator_args.problem_size = configuration->problem_size; operator_args.batch_count = configuration->batch_count; operator_args.lda = int(configuration->lda); operator_args.ldb = int(configuration->ldb); operator_args.ldd = int(configuration->ldd); return Status::kSuccess; } /// Constructs the arguments structure given the configuration and arguments static Status update_arguments_( OperatorArguments &operator_args, TrmmArguments const *arguments) { if (arguments->pointer_mode == ScalarPointerMode::kHost) { typename Operator::EpilogueOutputOp::Params params( *static_cast(arguments->alpha), *static_cast(arguments->beta) ); operator_args.epilogue = params; } else if (arguments->pointer_mode == ScalarPointerMode::kDevice){ typename Operator::EpilogueOutputOp::Params params( static_cast(arguments->alpha), static_cast(arguments->beta) ); operator_args.epilogue = params; } else { return Status::kErrorInvalidProblem; } // update arguments operator_args.ptr_A = arguments->A; operator_args.ptr_B = arguments->B; operator_args.batch_stride_A = arguments->batch_stride_A; operator_args.batch_stride_B = arguments->batch_stride_B; operator_args.ptr_D = arguments->D; operator_args.batch_stride_D = arguments->batch_stride_D; return Status::kSuccess; } public: /// Returns success if the operation can proceed virtual Status can_implement( void const *configuration_ptr, void const *arguments_ptr) const { TrmmConfiguration const *configuration = static_cast(configuration_ptr); TrmmArguments const *arguments = static_cast(arguments_ptr); OperatorArguments args; Status status = construct_arguments_(args, configuration); if (status != Status::kSuccess) { return status; } status = update_arguments_(args, arguments); if (status != Status::kSuccess) { return status; } return Operator::can_implement(args); } /// Gets the host-side workspace virtual uint64_t get_host_workspace_size( void const *configuration) const { return sizeof(Operator); } /// Gets the device-side workspace virtual uint64_t get_device_workspace_size( void const *configuration_ptr, void const *arguments_ptr = nullptr) const { OperatorArguments args; Status status = construct_arguments_( args, static_cast(configuration_ptr)); if (status != Status::kSuccess) { return 0; } uint64_t size = Operator::get_workspace_size(args); return size; } /// Initializes the workspace virtual Status initialize( void const *configuration_ptr, void *host_workspace, void *device_workspace, cudaStream_t stream = nullptr) const { OperatorArguments args; Status status = construct_arguments_( args, static_cast(configuration_ptr)); if (status != Status::kSuccess) { return status; } Operator *op = new (host_workspace) Operator; status = op->initialize(args, device_workspace, stream); return status; } /// Runs the kernel virtual Status run( void const *arguments_ptr, void *host_workspace, void *device_workspace = nullptr, cudaStream_t stream = nullptr) const { OperatorArguments args; Status status = update_arguments_( args, static_cast(arguments_ptr)); if (status != Status::kSuccess) { return status; } Operator *op = static_cast(host_workspace); bool need_swapped_matrices = (kSideMode == SideMode::kLeft && std::is_same::value) || (kSideMode == SideMode::kRight && std::is_same::value); if (need_swapped_matrices) { status = op->update(args.swapped_matrices(), device_workspace); } else { status = op->update(args, device_workspace); } if (status != Status::kSuccess) { return status; } status = op->run(stream); return status; } }; /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass ///////////////////////////////////////////////////////////////////////////////////////////////////