/*************************************************************************************************** * Copyright (c) 2024, Tri Dao. ******************************************************************************/ #pragma once #include #include #include #include #include "block_info.h" #include "kernel_traits.h" #include "utils.h" #include "softmax.h" #include "mask.h" #include "dropout.h" #include "alibi.h" namespace flash { using namespace cute; //////////////////////////////////////////////////////////////////////////////////////////////////// template CUTE_HOST_DEVICE auto make_tiled_copy_B_warpcontiguousN(Copy_Atom const& copy_atom, TiledMMA const& tiled_mma) { constexpr int TileShape_N = decltype(tiled_mma.template tile_size_mnk<1>())::value; constexpr int TileShape_K = decltype(tiled_mma.template tile_size_mnk<2>())::value; using AtomShape_MNK = typename TiledMMA::AtomShape_MNK; constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value; // Divide by 2 because right now we always use 2 for the ValLayout constexpr int kNWarpsN = TileShape_N / AtomShape_N / 2; constexpr int MMAStride_N = MMA_N * AtomShape_N * 2; // This gives the correct layout, idk why. // auto t = make_tile(Layout, _2>, // Stride, _8> >{}, // auto t = make_tile(Layout, // Stride<_1, _64, _8> >{}, auto t = make_tile(Layout, Int, _2>, // (8, 2, 2) or (8, 4, 2) Stride<_1, Int, _8> >{}, // (1, 64, 8) or (1, 32, 8) make_layout(Int{})); // if (cute::thread0()) {printf("make_tiled_copy_B_warpcontiguousN "); print(t); printf("\n"); } return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutB_TV(), t); } //////////////////////////////////////////////////////////////////////////////////////////////////// template CUTE_HOST_DEVICE auto make_tiled_copy_C_warpcontiguousN(Copy_Atom const& copy_atom, TiledMMA const& tiled_mma) { constexpr int TileShape_M = decltype(tiled_mma.template tile_size_mnk<0>())::value; constexpr int TileShape_N = decltype(tiled_mma.template tile_size_mnk<1>())::value; using AtomShape_MNK = typename TiledMMA::AtomShape_MNK; constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value; // Divide by 2 because right now we always use 2 for the ValLayout constexpr int kNWarpsN = TileShape_N / AtomShape_N / 2; constexpr int MMAStride_N = MMA_N * AtomShape_N * 2; auto t = make_tile(make_layout(Int{}), Layout, Int, _2>, // (8, 2, 2) or (8, 4, 2) Stride<_1, Int, _8> >{}); // (1, 64, 8) or (1, 32, 8) // if (cute::thread0()) {printf("make_tiled_copy_C_warpcontiguousN "); print(t); printf("\n"); } return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutC_TV(), t); } //////////////////////////////////////////////////////////////////////////////////////////////////// template inline __device__ void compute_dq_dk_dv_1colblock(const Params ¶ms, const int bidb, const int bidh, const int n_block) { using Element = typename Kernel_traits::Element; using ElementAccum = typename Kernel_traits::ElementAccum; using index_t = typename Kernel_traits::index_t; // Shared memory. extern __shared__ char smem_[]; // The thread index. const int tidx = threadIdx.x; constexpr int kBlockM = Kernel_traits::kBlockM; constexpr int kBlockN = Kernel_traits::kBlockN; constexpr int kHeadDim = Kernel_traits::kHeadDim; constexpr int MMA_N_SdP = kBlockN / decltype(typename Kernel_traits::TiledMmaSdP{}.template tile_size_mnk<1>())::value; constexpr int AtomLayoutMS = Kernel_traits::AtomLayoutMSdP; constexpr bool Double_buffer = !Kernel_traits::No_double_buffer; const BlockInfo binfo(params, bidb); if (n_block * kBlockN >= binfo.actual_seqlen_k) return; int m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM); if (Is_local) { m_block_max = std::min(m_block_max, cute::ceil_div((n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left, kBlockM)); } const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb) + (m_block_max - 1) * kBlockM * params.q_row_stride + bidh * params.q_head_stride; const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb) + n_block * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride; const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb) + n_block * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride; const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb) + (m_block_max - 1) * kBlockM * params.do_row_stride + bidh * params.do_head_stride; const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb) + (m_block_max - 1) * kBlockM * params.o_row_stride + bidh * params.o_head_stride; const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb) + (m_block_max - 1) * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride; const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb) + ((m_block_max - 1) * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128 * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded // If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer. + (!params.deterministic ? 0 : blockIdx.x * params.dq_accum_split_stride); const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + (m_block_max - 1) * kBlockM; const index_t row_offset_dpsum = (bidb * params.h + bidh) * params.seqlen_q_rounded + (m_block_max - 1) * kBlockM; Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast(params.q_ptr) + row_offset_q), Shape, Int>{}, make_stride(params.q_row_stride, _1{})); Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast(params.k_ptr) + row_offset_k), Shape, Int>{}, make_stride(params.k_row_stride, _1{})); Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast(params.v_ptr) + row_offset_v), Shape, Int>{}, make_stride(params.v_row_stride, _1{})); Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast(params.do_ptr) + row_offset_do), Shape, Int>{}, make_stride(params.do_row_stride, _1{})); Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast(params.o_ptr) + row_offset_o), Shape, Int>{}, make_stride(params.o_row_stride, _1{})); Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast(params.dq_ptr) + row_offset_dq), Shape, Int>{}, make_stride(params.dq_row_stride, _1{})); Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast(params.dq_accum_ptr) + row_offset_dq_accum), Shape, Int>{}, make_stride(params.h * params.d_rounded, _1{})); Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast(params.softmax_lse_ptr) + row_offset_lse), Shape>{}, Stride<_1>{}); Tensor gdPsum = make_tensor(make_gmem_ptr(reinterpret_cast(params.dsoftmax_sum) + row_offset_dpsum), Shape>{}, Stride<_1>{}); Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast(smem_)), typename Kernel_traits::SmemLayoutQdO{}); Tensor sQt = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposed{}); Tensor sQtNoSwizzle = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{}); // Double buffer for sQ Tensor sdO = make_tensor(sQ.data() + (Double_buffer ? 2 : 1) * size(sQ), typename Kernel_traits::SmemLayoutQdO{}); Tensor sdOt = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposed{}); Tensor sdOtransposedNoSwizzle = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{}); Tensor sK = make_tensor(sdO.data() + size(sdO), typename Kernel_traits::SmemLayoutKV{}); Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{}); Tensor sKt = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposed{}); Tensor sKtNoSwizzle = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposedNoSwizzle{}); Tensor sdS = make_tensor(!Kernel_traits::Is_V_in_regs ? sV.data() + size(sV) : sK.data() + size(sK), typename Kernel_traits::SmemLayoutPdS{}); Tensor sdSt = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposed{}); Tensor sdStNoSwizzle = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{}); Tensor sP = make_tensor(sdS.data() + size(sdS), typename Kernel_traits::SmemLayoutPdS{}); Tensor sPt = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposed{}); Tensor sPtNoSwizzle = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{}); // sP and sdQ share the same memory so be careful Tensor sdQ = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutdQ{}); typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV; auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx); using GmemTiledCopydO = std::conditional_t< Is_first, typename Kernel_traits::GmemTiledCopydO, typename Kernel_traits::GmemTiledCopyQKV >; GmemTiledCopydO gmem_tiled_copy_dO; auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx); typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ; auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx); using GmemLayoutAtomdQaccum = std::conditional_t< !Seq_parallel, typename Kernel_traits::GmemTiledCopydQaccum, typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd >; GmemLayoutAtomdQaccum gmem_tiled_copy_dQaccum; auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx); Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ); Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ); Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO); Tensor tdOsdO = gmem_thr_copy_dO.partition_D(sdO); Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO); Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K) Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK); Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K) Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV); Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ); // ((Atom,AtomNum),ATOM_M,ATOM_N) Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ); Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum); // if (cute::thread0()) { print(tdQgdQaccum.layout()); printf("\n"); } // __syncthreads(); // if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx < 64) { // printf("tidx = %d, tdQgdQaccum = 0x%p\n", tidx, tdQgdQaccum.data()); // } typename Kernel_traits::TiledMmaSdP tiled_mma_sdp; auto thr_mma_sdp = tiled_mma_sdp.get_thread_slice(tidx); Tensor tSrQ = thr_mma_sdp.partition_fragment_A(sQ); // (MMA,MMA_N,MMA_K) Tensor tSrK = thr_mma_sdp.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K) Tensor tdPrdO = thr_mma_sdp.partition_fragment_A(sdO); // (MMA,MMA_N,MMA_K) Tensor tdPrV = thr_mma_sdp.partition_fragment_B(sV); // (MMA,MMA_N,MMA_K) typename Kernel_traits::TiledMmadKV tiled_mma_dkv; auto thr_mma_dkv = tiled_mma_dkv.get_thread_slice(tidx); Tensor tdKrdSt = thr_mma_dkv.partition_fragment_A(sdStNoSwizzle); // (MMA, MMA_N, MMA_N) Tensor tdKrQt = thr_mma_dkv.partition_fragment_B(sQtNoSwizzle); // (MMA, MMA_K, MMA_N) Tensor tdVrPt = thr_mma_dkv.partition_fragment_A(sPtNoSwizzle); // (MMA, MMA_N, MMA_N) Tensor tdVrdO = thr_mma_dkv.partition_fragment_B(sdOtransposedNoSwizzle); // (MMA, MMA_K, MMA_N) typename Kernel_traits::TiledMmadQ tiled_mma_dq; auto thr_mma_dq = tiled_mma_dq.get_thread_slice(tidx); Tensor tdQrdS = thr_mma_dq.partition_fragment_A(sdS); // (MMA, MMA_N, MMA_N) Tensor tdQrKt = thr_mma_dq.partition_fragment_B(sKtNoSwizzle); // (MMA, MMA_K, MMA_N) Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape, Int>{}); // MMA, MMA_N, MMA_K Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape, Int>{}); // MMA, MMA_N, MMA_K // // Copy Atom retiling // auto smem_tiled_copy_QdO = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp); auto smem_thr_copy_QdO = smem_tiled_copy_QdO.get_thread_slice(tidx); Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ); Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO); // auto smem_thr_copy_KV = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx); auto smem_tiled_copy_KV = make_tiled_copy_B_warpcontiguousN(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp); auto smem_thr_copy_KV = smem_tiled_copy_KV.get_thread_slice(tidx); Tensor tSsK = smem_thr_copy_KV.partition_S(sK); // if (cute::thread(0, 0) && n_block == 0) { printf("sK layout: "); print(sK.layout()); printf("\n"); } // if (cute::thread(0, 0) && n_block == 0) { print(tSsK.layout()); printf("\n"); } Tensor tdPsV = smem_thr_copy_KV.partition_S(sV); // Partition sP and sdS to match the accumulator partitioning // This has to be tiled_mma_sdp, not tiled_mma_dkv // auto smem_thr_copy_PdS = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp).get_thread_slice(tidx); auto smem_tiled_copy_PdS = make_tiled_copy_C_warpcontiguousN(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp); auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(tidx); Tensor tPsP = smem_thr_copy_PdS.partition_D(sP); // ((Atom,AtomNum),PIPE_M,PIPE_N) // if (cute::thread(0, 0) && n_block == 0) { printf("sP layout: "); print(sP.layout()); printf("\n"); } // if (cute::thread(0, 0) && n_block == 0) { print(tPsP.layout()); printf("\n"); } // if (n_block == 0 && blockIdx.x == 0 && blockIdx.y == 0 && tidx < 64) { // printf("tidx=%d, tPsP = 0x%p\n", tidx, tPsP.data()); // } Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS); // ((Atom,AtomNum),PIPE_M,PIPE_N) auto smem_tiled_copy_PdSt = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv); auto smem_thr_copy_PdSt = smem_tiled_copy_PdSt.get_thread_slice(tidx); Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt); Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt); auto smem_tiled_copy_QdOt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv); auto smem_thr_copy_QdOt = smem_tiled_copy_QdOt.get_thread_slice(tidx); Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt); Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt); auto smem_tiled_copy_dS = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_dq); auto smem_thr_copy_dS = smem_tiled_copy_dS.get_thread_slice(tidx); Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS); auto smem_tiled_copy_Kt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dq); auto smem_thr_copy_Kt = smem_tiled_copy_Kt.get_thread_slice(tidx); Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt); auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq); auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx); Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ); // ((Atom,AtomNum),PIPE_M,PIPE_N) // // PREDICATES // Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k) Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k) Tensor tQcQ = gmem_thr_copy_QKV.partition_D(cQ); Tensor tKVcKV = gmem_thr_copy_QKV.partition_D(cKV); // Allocate predicate tensors for k Tensor tQpQ = make_tensor(make_shape(size<2>(tQsQ))); Tensor tKVpKV = make_tensor(make_shape(size<2>(tKsK))); // Set predicates for k bounds if (!Is_even_K) { #pragma unroll for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; } #pragma unroll for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; } } // Prologue // We'll advance gdQ and gdQaccum before the 1st read/write. tdQgdQ.data() = tdQgdQ.data() + kBlockM * params.dq_row_stride; tdQgdQaccum.data() = tdQgdQaccum.data() + kBlockM * params.h * params.d_rounded; int m_block = m_block_max - 1; int m_block_min = (!Is_causal && !Is_local) ? 0 : std::max(0, (n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right) / kBlockM); // If not local, we're guaranteed that m_block_min <= m_block: // We checked earlier that n_block * kBlockN < actual_seqlen_k, so in the causal case, // n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k < actual_seqlen_q. // So m_block_min <= (actual_seqlen_q - 1) / kBlockM. // Recall that m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM) = (actual_seqlen_q + kBlockM - 1) / kBlockM. // So m_block_m - 1 = (actual_seqlen_q - 1) / kBlockM. // We conclude that m_block_min <= m_block, so we will always have at least 1 iteration of the for loop. // However, if local, then this possible to have some blocks of K & V not attending to any query. // We might need to exit early and write 0 to dK and dV for those blocks. // Otherwise we get wrong result for the case where we don't enter the for loop. // And we might read OOB elements from gQ and gdO. // This also covers the case where actual_seqlen_q == 0 if ((Is_local || !Is_even_MN) && m_block < m_block_min) { const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb) + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride; const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb) + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride; Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast(params.dk_ptr) + row_offset_dk), Shape, Int>{}, make_stride(params.dk_row_stride, _1{})); Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast(params.dv_ptr) + row_offset_dv), Shape, Int>{}, make_stride(params.dv_row_stride, _1{})); typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV; auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx); Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK); Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV); Tensor tdKrdK = make_tensor(shape(tdKgdK)); Tensor tdVrdV = make_tensor(shape(tdVgdV)); clear(tdKrdK); clear(tdVrdV); Tensor cdKV = make_identity_tensor(make_shape(size<0>(gdK), size<1>(gdK))); // (BLK_N,BLK_K) -> (blk_n,blk_k) Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV); Tensor tdKVpdKV = make_tensor(make_shape(size<2>(tdKgdK))); #pragma unroll for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; } // Clear_OOB_K must be false since we don't want to write zeros to gmem flash::copy( gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN ); flash::copy( gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN ); return; } if (Double_buffer && m_block % 2 == 1) { // Double buffer for sQ tQsQ.data() = tQsQ.data() + size(sQ); tSsQ.data() = tSsQ.data() + size(sQ); tdKsQt.data() = tdKsQt.data() + size(sQ); } if ((!Is_first && !Seq_parallel) || params.deterministic) { __syncthreads(); } if (Kernel_traits::Is_V_in_regs) { // Clear the smem tiles to account for predicated off loads flash::copy( gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN ); flash::cp_async_fence(); } Tensor tdOrdO = make_fragment_like(tdOgdO); Tensor tdOrO = make_fragment_like(tdOgO); if (!Is_first) { // Clear the smem tiles to account for predicated off loads flash::copy( gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM ); } else { flash::copy( gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM ); flash::copy( gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM ); } flash::copy( gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM ); Tensor caccS = make_identity_tensor(Shape, Int>{}); // (BLK_M,BLK_N) -> (blk_m,blk_n) Tensor taccScS = thr_mma_sdp.partition_C(caccS); // (MMA,MMA_N,MMA_N) static_assert(decltype(size<0>(taccScS))::value == 4); // Convert to ((2, 2), MMA_N, MMA_N) then take only the row indices. Tensor taccScS_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0); Tensor lse = make_tensor(Shape>{}); #pragma unroll for (int mi = 0; mi < size(lse); ++mi) { const int row = get<0>(taccScS_row(mi)); lse(mi) = Is_even_MN || row < binfo.actual_seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY; } // We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero, // and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply // with V (which would be zero), we're fine. However, with ALiBi, we might modify these // scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0. // Tensor tKrK = make_fragment_like(tKsK); // // cute::copy(gmem_tiled_copy_QKV, tKgK(_, _, _, 0), tKrK); // cute::copy(gmem_tiled_copy_QKV, tKgK, tKrK); // // if (cute::thread(1, 0)) { print(tKrK); } flash::copy( gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN ); if (!Kernel_traits::Is_V_in_regs) { flash::copy( gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN ); } flash::cp_async_fence(); // if (cute::thread0()) { print(tdOgdO.layout()); printf("\n"); print(tdOrdO); print(tdOrO); } if (Is_first) { cute::copy(tdOrdO, tdOsdO); dot_do_o(tdOrdO, tdOrO, gdPsum, Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout); } if (Kernel_traits::Is_V_in_regs) { cute::cp_async_wait<1>(); __syncthreads(); Tensor tdPrV_copy_view = smem_thr_copy_KV.retile_D(tdPrV); CUTE_STATIC_ASSERT_V(size<1>(tdPsV) == size<1>(tdPrV_copy_view)); // M cute::copy(smem_tiled_copy_KV, tdPsV, tdPrV_copy_view); } flash::Dropout dropout(params.rng_state[0], params.rng_state[1], params.p_dropout_in_uint8_t, bidb, bidh, tidx, params.h); clear(acc_dv); clear(acc_dk); const float alibi_slope = !Has_alibi || params.alibi_slopes_ptr == nullptr ? 0.0f : reinterpret_cast(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax; flash::Alibi alibi(alibi_slope, binfo.actual_seqlen_k, binfo.actual_seqlen_q); for (; m_block >= m_block_min; --m_block) { Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape, Int>{}); // (MMA=4, MMA_N, MMA_N) clear(acc_s); cute::cp_async_wait<0>(); __syncthreads(); Tensor dP_sum = make_fragment_like(lse); #pragma unroll for (int mi = 0; mi < size(lse); ++mi) { dP_sum(mi) = gdPsum(get<0>(taccScS_row(mi))); } // if (cute::thread0()) { print(sK); } // Tensor tSrK_copy_view = smem_thr_copy_KV.retile_D(tSrK); // #pragma unroll // for (int k = 0; k < size<2>(tSrK_copy_view); ++k) { // cute::copy(smem_tiled_copy_KV, tSsK(_, _, k), tSrK_copy_view(_, _, k)); // } // if (cute::thread0()) { print(tSrK); } flash::gemm(acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma_sdp, smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV); // Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N)) Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout())); // if (cute::thread(32, 0)) { print(scores); } if (Has_alibi) { alibi.apply_alibi(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16, m_block * kBlockM + get<0>(taccScS_row(0)), AtomLayoutMS * 16); } // TD [2023-07-29]: I was thinking that we don't need to mask out the elements beyond // actual_seqlen_k, because acc_s would be some finite value for those indices. // In the end when we multiply with K to get dQ, the corresponding values of K would be 0, // so the result would still be correct. // However, it's possible that the values in acc_s are so large that they overflow // when we multiply with dP and convert to fp16, resulting in Inf in dS and NaNs in dQ. // So we need to mask out the elements beyond actual_seqlen_k. if (!Is_causal && !Is_local) { if (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k) { flash::apply_mask(scores, binfo.actual_seqlen_k, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16); } } else if (Is_causal) { // Putting this causal masking right after acc_s is *much* slower for some reason. // TD [2023-08-16]: We need the 2nd condition because if seqlen_q is long and seqlen_k is short // (e.g., 256 and 2), the 2nd block of seqlen_q (from 128 to 255), we're not doing causal masking. // But we still want to mask out elements beyond actual_seqlen_k. if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k || (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) { flash::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16, binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)), binfo.actual_seqlen_q, // binfo.actual_seqlen_k, m_block * kBlockM + (tidx / 32) % AtomLayoutMS * 16 + (tidx % 32) / 4, AtomLayoutMS * 16); } } else if (Is_local) { if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right || (m_block + 1) * kBlockM >= n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left || (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) { flash::apply_mask_local(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16, binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)), binfo.actual_seqlen_q, AtomLayoutMS * 16, params.window_size_left, params.window_size_right); } } // if (cute::thread(32, 0)) { print(scores); } // Compute the exponential value. flash::scale_apply_exp2(scores, lse, params.scale_softmax_log2); if constexpr (Is_dropout) { int warp_id = tidx / 32; int block_row_idx = m_block * (kBlockM / 16) + warp_id % AtomLayoutMS; // Need col to be multiples of 32, since we're doing dropout with block of 16 x 32 static_assert(MMA_N_SdP % 2 == 0); int block_col_idx = n_block * (kBlockN / 32) + (warp_id / AtomLayoutMS) * (MMA_N_SdP / 2); dropout.template apply_dropout( acc_s, block_row_idx, block_col_idx, AtomLayoutMS ); } // Convert scores from fp32 to fp16/bf16 Tensor rP = !Is_dropout ? flash::convert_type(acc_s) : flash::convert_type_relu(acc_s); // Reshape rP from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_N, MMA_N / 2) // if using m16n8k16 or (4, MMA_N, MMA_N) if using m16n8k8. Tensor tPrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs(rP.layout())); Tensor tPaP = smem_thr_copy_PdS.retile_S(tPrP); // ((Atom,AtomNum), MMA_N, MMA_N) cute::copy(smem_tiled_copy_PdS, tPaP, tPsP); // if (cute::thread0()) { print(tPaP); } // __syncthreads(); // if (cute::thread0()) { print(sP); } Tensor acc_dp = partition_fragment_C(tiled_mma_sdp, Shape, Int>{}); // (MMA=4, MMA_N, MMA_N) CUTE_STATIC_ASSERT_V(size<0>(acc_dp) == size<0>(acc_s)); // MMA CUTE_STATIC_ASSERT_V(size<1>(acc_dp) == size<1>(acc_s)); // MMA CUTE_STATIC_ASSERT_V(size<2>(acc_dp) == size<2>(acc_s)); // MMA clear(acc_dp); // Tensor acc_dp_reshaped = make_tensor(acc_dp.data(), flash::convert_layout_acc_rowcol(acc_dp.layout())); // #pragma unroll // for (int mi = 0; mi < size<0>(acc_dp_reshaped); ++mi) { // #pragma unroll // for (int ni = 0; ni < size<1>(acc_dp_reshaped); ++ni) { // acc_dp_reshaped(mi, ni) = -dP_sum(mi); // } // } // if (cute::thread0()) { print(dP_sum); } flash::gemm( acc_dp, tdPrdO, tdPrV, tdPsdO, tdPsV, tiled_mma_sdp, smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV ); // Reshape acc_dp from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N)) Tensor dS = make_tensor(acc_dp.data(), scores.layout()); auto pointwise_mult = [](float p, float dp, float d) { return p * (!Is_dropout || p >= 0 ? dp - d : d); }; #pragma unroll for (int mi = 0; mi < size<0>(dS); ++mi) { #pragma unroll for (int ni = 0; ni < size<1>(dS); ++ni) { dS(mi, ni) = pointwise_mult(scores(mi, ni), dS(mi, ni), dP_sum(mi)); } } // if (cute::thread0()) { print(dS); } Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape, Int>{}); // MMA, MMA_N, MMA_K tdQgdQaccum.data() = tdQgdQaccum.data() + (-int(kBlockM * params.h * params.d_rounded)); if (Is_first || Seq_parallel) { clear(acc_dq); } else { // Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum Tensor acc_dq_reshaped = make_tensor(acc_dq.data(), make_layout(get<0>(acc_dq.layout()), get<2>(acc_dq.layout()), get<1>(acc_dq.layout()))); cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, acc_dq_reshaped); } if (Double_buffer && m_block > m_block_min) { // Double buffer for sQ const int sQ_offset = m_block % 2 == 0 ? size(sQ) : -size(sQ); tQsQ.data() = tQsQ.data() + sQ_offset; tSsQ.data() = tSsQ.data() + sQ_offset; // Advance gQ tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride)); flash::copy(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ); flash::cp_async_fence(); } Tensor dS_reshaped = make_tensor(dS.data(), acc_dp.layout()); // Convert dS from fp32 to fp16 Tensor tdSrdS = flash::convert_type(dS_reshaped); // if (cute::thread0()) { print(tPrP); } Tensor tdSadS = smem_thr_copy_PdS.retile_S(tdSrdS); // ((Atom,AtomNum), MMA_N, MMA_N) cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS); __syncthreads(); // Layout p_l = tPrP.layout(); // Tensor tdVrPt = make_tensor(tPrP.data(), make_layout(get<0>(p_l), get<2>(p_l), get<1>(p_l))); // flash::gemm_rs(acc_dv, tdVrPt, tdVrdO, tdVsdOt, tiled_mma_dkv, smem_thr_copy_QdOt); // Tensor tdKrdSt = make_tensor(tdSrdS.data(), tdVrPt.layout()); // flash::gemm_rs(acc_dk, tdKrdSt, tdKrQt, tdKsQt, tiled_mma_dkv, smem_thr_copy_QdOt); flash::gemm(acc_dv, tdVrPt, tdVrdO, tdVsPt, tdVsdOt, tiled_mma_dkv, smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt); // if (cute::thread0() && n_block == 0 && m_block == 0) { print(tdVrPt); } // if (cute::thread0()) { print(acc_dv); } __syncthreads(); // Need syncthreads since we're writing to the same sdO location if (m_block > m_block_min) { // Advance gdO tdOgdO.data() = tdOgdO.data() + (-int(kBlockM * params.do_row_stride)); if (Is_first) { tdOgO.data() = tdOgO.data() + (-int(kBlockM * params.o_row_stride)); flash::copy(gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ); flash::copy(gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ); } else { flash::copy(gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ); flash::cp_async_fence(); } } flash::gemm(acc_dq, tdQrdS, tdQrKt, tdQsdS, tdQsKt, tiled_mma_dq, smem_tiled_copy_dS, smem_tiled_copy_Kt, smem_thr_copy_dS, smem_thr_copy_Kt); // if (cute::thread0()) { print(acc_dq); } if (m_block > m_block_min) { gLSE.data() = gLSE.data() + (-int(kBlockM)); #pragma unroll for (int mi = 0; mi < size(lse); ++mi) { lse(mi) = gLSE(get<0>(taccScS_row(mi))); } gdPsum.data() = gdPsum.data() + (-int(kBlockM)); } if (!Is_last) { // Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum Tensor acc_dq_reshaped = make_tensor(acc_dq.data(), make_layout(get<0>(acc_dq.layout()), get<2>(acc_dq.layout()), get<1>(acc_dq.layout()))); if (!Seq_parallel) { cute::copy(gmem_tiled_copy_dQaccum, acc_dq_reshaped, tdQgdQaccum); } else { // if (cute::thread0()) { print(acc_dq.layout()); printf("\n"); print(acc_dq_reshaped.layout()); printf("\n"); print(tdQgdQaccum.layout()); printf("\n"); } CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum)); #pragma unroll for (int i = 0; i < size(acc_dq); ++i) { atomicAdd(&tdQgdQaccum(i), acc_dq(i)); } } } else { #pragma unroll for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; } // Convert acc_dq from fp32 to fp16 Tensor rdQ = flash::convert_type(acc_dq); Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ); // ((Atom,AtomNum), MMA_N, MMA_N) cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ); } flash::gemm(acc_dk, tdKrdSt, tdKrQt, tdKsdSt, tdKsQt, tiled_mma_dkv, smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt); // if (cute::thread0()) { print(acc_dk); } if (Double_buffer) { // Double buffer for sQ tdKsQt.data() = tdKsQt.data() + (m_block % 2 == 0 ? size(sQ) : -size(sQ)); } if (!Double_buffer && m_block > m_block_min) { __syncthreads(); // Advance gQ tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride)); flash::copy(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ); flash::cp_async_fence(); } if (Is_first && m_block > m_block_min) { cute::copy(tdOrdO, tdOsdO); dot_do_o(tdOrdO, tdOrO, gdPsum, Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout); } if (Is_last) { __syncthreads(); Tensor tdQrdQ = make_tensor(shape(tdQgdQ)); cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ); tdQgdQ.data() = tdQgdQ.data() + (-int(kBlockM * params.dq_row_stride)); Tensor cdQ = make_identity_tensor(Shape, Int>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k) Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ); #pragma unroll for (int m = 0; m < size<1>(tdQgdQ); ++m) { if (Is_even_MN || get<0>(tdQcdQ(0, m, 0)) < binfo.actual_seqlen_q - m_block * kBlockM) { cute::copy(gmem_tiled_copy_dQ, tdQrdQ(_, m, _), tdQgdQ(_, m, _)); } } } } // Epilogue if (Is_dropout) { #pragma unroll for (int i = 0; i < size(acc_dv); ++i) { acc_dv(i) *= params.rp_dropout; } } #pragma unroll for (int i = 0; i < size(acc_dk); ++i) { acc_dk(i) *= params.scale_softmax_rp_dropout; } // Convert acc_dv from fp32 to fp16 Tensor rdK = flash::convert_type(acc_dk); Tensor rdV = flash::convert_type(acc_dv); Tensor sdK = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K) Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K) // Partition sdV and sdK to match the accumulator partitioning auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv); auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx); Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK); // ((Atom,AtomNum), MMA_N, MMA_N) Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK); // ((Atom,AtomNum),PIPE_M,PIPE_N) Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV); // ((Atom,AtomNum), MMA_N, MMA_N) Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV); // ((Atom,AtomNum),PIPE_M,PIPE_N) // We need syncthreads here since we're writing to the same location as sK and sV. // Without syncthreads, some thread might modify the location of sK while another thread // is reading it for dQ gemm, leading to a race condition. // If Is_last, there's already a __syncthreads() at the end of the loop. if (!Is_last) { __syncthreads(); } cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK); cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV); const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb) + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride; const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb) + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride; Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast(params.dk_ptr) + row_offset_dk), Shape, Int>{}, make_stride(params.dk_row_stride, _1{})); Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast(params.dv_ptr) + row_offset_dv), Shape, Int>{}, make_stride(params.dv_row_stride, _1{})); typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV; auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx); Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK); // ((Atom,AtomNum),ATOM_M,ATOM_N) Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK); Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV); // ((Atom,AtomNum),ATOM_M,ATOM_N) Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV); __syncthreads(); Tensor tdKrdK = make_tensor(shape(tdKgdK)); cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK); Tensor tdVrdV = make_tensor(shape(tdVgdV)); cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV); Tensor cdKV = make_identity_tensor(make_shape(size<0>(sdK), size<1>(sdK))); // (BLK_N,BLK_K) -> (blk_n,blk_k) Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV); Tensor tdKVpdKV = make_tensor(make_shape(size<2>(tdKgdK))); #pragma unroll for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; } // Clear_OOB_K must be false since we don't want to write zeros to gmem flash::copy( gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN ); flash::copy( gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN ); } //////////////////////////////////////////////////////////////////////////////////////////////////// template inline __device__ void compute_dq_dk_dv(const Params ¶ms) { // The block index for the batch. const int bidb = blockIdx.x; // const int bidb = blockIdx.y; // The block index for the head. const int bidh = blockIdx.y; // const int bidh = blockIdx.z; // The thread index. const int tidx = threadIdx.x; const int n_block_max = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN; if (n_block_max == 1) { compute_dq_dk_dv_1colblock(params, bidb, bidh, 0); } else { // Iterating backward from n_block_max - 1 to 0 might save 1 register compute_dq_dk_dv_1colblock(params, bidb, bidh, n_block_max - 1); for (int n_block = n_block_max - 2; n_block > 0; n_block--) { compute_dq_dk_dv_1colblock(params, bidb, bidh, n_block); } compute_dq_dk_dv_1colblock(params, bidb, bidh, 0); } } //////////////////////////////////////////////////////////////////////////////////////////////////// template inline __device__ void compute_dq_dk_dv_seqk_parallel(const Params ¶ms) { // The block index for the batch. const int bidb = blockIdx.y; // The block index for the head. const int bidh = blockIdx.z; // If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer. for (int n_block = blockIdx.x; n_block < (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN; n_block += gridDim.x) { compute_dq_dk_dv_1colblock(params, bidb, bidh, n_block); } } //////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace flash