![ALT](../images/gemm-hierarchy-with-epilogue-no-labels.png "CUTLASS Quick Start Guide") [README](../../README.md#documentation) > **Quick Start** # Quickstart ## Prerequisites CUTLASS requires: - NVIDIA CUDA Toolkit (11.4 or later required, [12.0](https://developer.nvidia.com/cuda-toolkit) recommended) - CMake 3.18+ - host compiler supporting C++17 or greater (minimum g++ 7.5.0) - Python 3.6+ CUTLASS may be optionally compiled and linked with - cuBLAS - cuDNN v7.6 or later ## Initial build steps Construct a build directory and run CMake. ```bash $ export CUDACXX=${CUDA_INSTALL_PATH}/bin/nvcc $ mkdir build && cd build $ cmake .. -DCUTLASS_NVCC_ARCHS=90a # compiles for NVIDIA Hopper GPU architecture ``` If your goal is strictly to build only the CUTLASS Profiler and to minimize compilation time, we suggest executing the following CMake command in an empty `build/` directory. ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS=90a -DCUTLASS_ENABLE_TESTS=OFF -DCUTLASS_UNITY_BUILD_ENABLED=ON ``` This reduces overall compilation time by excluding unit tests and enabling the unity build. You may reduce build times by compiling only certain operations by setting the `CUTLASS_LIBRARY_OPERATIONS` flag as shown below, executed from an empty `build/` directory. This only compiles 2-D convolution kernels. ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS=90a -DCUTLASS_LIBRARY_OPERATIONS=conv2d ``` You may also filter kernels by name by supplying a filter string with flag `CUTLASS_LIBRARY_KERNELS`. For example the below command selects only CUTLASS-3 kernels. ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS=90a -DCUTLASS_LIBRARY_KERNELS=cutlass3x* ``` See more examples on selectively compiling CUTLASS GEMM and convolution kernels [here](quickstart.md#example-cmake-commands). You may explicitly exclude cuBLAS and cuDNN as dependencies with the following CMake flags. - `-DCUTLASS_ENABLE_CUBLAS=OFF` - `-DCUTLASS_ENABLE_CUDNN=OFF` ## Build and run the CUTLASS Profiler From the `build/` directory created above, compile the CUTLASS Profiler. ```bash $ make cutlass_profiler -j12 ``` Then execute the CUTLASS Profiler computing GEMM, execute the following command. ```bash $ ./tools/profiler/cutlass_profiler --kernels=sgemm --m=4352 --n=4096 --k=4096 ============================= Problem ID: 1 Provider: CUTLASS Operation: cutlass_simt_sgemm_128x128_nn Disposition: Passed Status: Success Arguments: --m=4352 --n=4096 --k=4096 --A=f32:column --B=f32:column --C=f32:column --alpha=1 --beta=0 \ --split_k_slices=1 --batch_count=1 --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 \ --stages=2 --warps_m=2 --warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 \ --max_cc=1024 Bytes: 52428800 bytes FLOPs: 146064539648 flops Runtime: 10.5424 ms Memory: 4.63158 GiB/s Math: 13854.9 GFLOP/s ``` To execute the CUTLASS Profiler for convolution, run the following example. ```bash $ ./tools/profiler/cutlass_profiler --kernels=s1688fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --pad_h=1 --pad_w=1 ``` To execute all CUTLASS 2-D convolution operators, execute the following. ```bash $ ./tools/profiler/cutlass_profiler --operation=conv2d --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 ============================= Problem ID: 1 Provider: CUTLASS OperationKind: conv2d Operation: cutlass_simt_sfprop_optimized_128x128_8x2_nhwc Status: Success Verification: ON Disposition: Passed reference_device: Passed Arguments: --conv_kind=fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --p=224 --q=224 --pad_h=1 --pad_w=1 \ --stride_h=1 --stride_w=1 --dilation_h=1 --dilation_w=1 --Activation=f32:nhwc --Filter=f32:nhwc --Output=f32:nhwc \ --conv_mode=cross --iterator_algorithm=optimized --alpha=1 --beta=0 --split_k_mode=serial --split_k_slices=1 \ --eq_gemm_provider=none --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 --stages=2 --warps_m=4 \ --warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 --max_cc=1024 Bytes: 2055798784 bytes FLOPs: 118482796544 flops Runtime: 8.13237 ms Memory: 235.431 GiB/s Math: 14569.3 GFLOP/s ``` See [documentation for the CUTLASS Profiler](profiler.md) for more details. ## Build and run CUTLASS Unit Tests From the `build/` directory created above, simply build the target `test_unit` to compile and run all unit tests. ```bash $ make test_unit -j ... ... ... [----------] Global test environment tear-down [==========] 946 tests from 57 test cases ran. (10812 ms total) [ PASSED ] 946 tests. $ ``` The exact number of tests run is subject to change as we add more functionality. No tests should fail. Unit tests automatically construct the appropriate runtime filters to avoid executing on architectures that do not support all features under test. The unit tests are arranged hierarchically mirroring the CUTLASS Template Library. This enables parallelism in building and running tests as well as reducing compilation times when a specific set of tests are desired. For example, the following executes strictly the warp-level GEMM tests. ```bash $ make test_unit_gemm_warp -j ... ... [----------] 3 tests from SM75_warp_gemm_tensor_op_congruous_f16 [ RUN ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x8_32x128x8_16x8x8 [ OK ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x8_32x128x8_16x8x8 (0 ms) [ RUN ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x32_64x64x32_16x8x8 [ OK ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x32_64x64x32_16x8x8 (2 ms) [ RUN ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x32_32x32x32_16x8x8 [ OK ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x32_32x32x32_16x8x8 (1 ms) [----------] 3 tests from SM75_warp_gemm_tensor_op_congruous_f16 (3 ms total) ... ... [----------] Global test environment tear-down [==========] 104 tests from 32 test cases ran. (294 ms total) [ PASSED ] 104 tests. [100%] Built target test_unit_gemm_warp ``` ## Building for Multiple Architectures To minimize compilation time, specific GPU architectures can be enabled via the CMake command, selected by [CUDA Compute Capability.](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities) **NVIDIA Ampere Architecture.** ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS=90a # compiles for NVIDIA Hopper GPU architecture ``` ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS=80 # compiles for NVIDIA Ampere GPU architecture ``` **NVIDIA Turing Architecture.** ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS=75 # compiles for NVIDIA Turing GPU architecture ``` **NVIDIA Volta Architecture.** ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS=70 # compiles for NVIDIA Volta GPU architecture ``` **NVIDIA Pascal Architecture.** ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS="60;61" # compiles for NVIDIA Pascal GPU architecture ``` **NVIDIA Maxwell Architecture.** ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS="50;53" # compiles for NVIDIA Maxwell GPU architecture ``` ## Using CUTLASS within other applications Applications should list [`/include`](/include) within their include paths. They must be compiled as C++17 or greater. **Example:** print the contents of a variable storing half-precision data. ```c++ #include #include #include #include int main() { cutlass::half_t x = 2.25_hf; std::cout << x << std::endl; return 0; } ``` ## Launching a GEMM kernel in CUDA **Example:** launch a mixed-precision GEMM targeting Turing Tensor Cores. _Note, this example uses CUTLASS Utilities. Be sure `tools/util/include` is listed as an include path._ ```c++ #include #include #include int main() { // Define the GEMM operation using Gemm = cutlass::gemm::device::Gemm< cutlass::half_t, // ElementA cutlass::layout::ColumnMajor, // LayoutA cutlass::half_t, // ElementB cutlass::layout::ColumnMajor, // LayoutB cutlass::half_t, // ElementOutput cutlass::layout::ColumnMajor, // LayoutOutput float, // ElementAccumulator cutlass::arch::OpClassTensorOp, // tag indicating Tensor Cores cutlass::arch::Sm75 // tag indicating target GPU compute architecture >; Gemm gemm_op; cutlass::Status status; // // Define the problem size // int M = 512; int N = 256; int K = 128; float alpha = 1.25f; float beta = -1.25f; // // Allocate device memory // cutlass::HostTensor A({M, K}); cutlass::HostTensor B({K, N}); cutlass::HostTensor C({M, N}); cutlass::half_t const *ptrA = A.device_data(); cutlass::half_t const *ptrB = B.device_data(); cutlass::half_t const *ptrC = C.device_data(); cutlass::half_t *ptrD = C.device_data(); int lda = A.device_ref().stride(0); int ldb = B.device_ref().stride(0); int ldc = C.device_ref().stride(0); int ldd = C.device_ref().stride(0); // // Launch GEMM on the device // status = gemm_op({ {M, N, K}, {ptrA, lda}, // TensorRef to A device tensor {ptrB, ldb}, // TensorRef to B device tensor {ptrC, ldc}, // TensorRef to C device tensor {ptrD, ldd}, // TensorRef to D device tensor - may be the same as C {alpha, beta} // epilogue operation arguments }); if (status != cutlass::Status::kSuccess) { return -1; } return 0; } ``` Note, the above could be simplified as follows using helper methods defined in `HostTensor`. ```c++ cutlass::HostTensor A({M, K}); cutlass::HostTensor B({K, N}); cutlass::HostTensor C({M, N}); // // Use the TensorRef returned by HostTensor::device_ref(). // status = gemm_op({ {M, N, K}, A.device_ref(), // TensorRef to A device tensor B.device_ref(), // TensorRef to B device tensor C.device_ref(), // TensorRef to C device tensor C.device_ref(), // TensorRef to D device tensor - may be the same as C {alpha, beta} // epilogue operation arguments }); ``` ## Launching a GEMM kernel using CUTLASS 3.0 or newer **Example:** launch a mixed-precision GEMM targeting Hopper Tensor Cores. ```c++ #include "cutlass/cutlass.h" #include "cutlass/epilogue/collective/default_epilogue.hpp" #include "cutlass/epilogue/thread/linear_combination.h" #include "cutlass/gemm/collective/collective_builder.hpp" #include "cutlass/gemm/device/gemm_universal_adapter.h" #include "cutlass/gemm/kernel/gemm_universal.hpp" #include "cutlass/util/host_tensor.h" #include "cutlass/util/packed_stride.hpp" using namespace cute; int main(int argc, char const **args) { // A matrix configuration using ElementA = cutlass::half_t; // Element type for A matrix operand using LayoutA = cutlass::layout::RowMajor; // Layout type for A matrix operand constexpr int AlignmentA = 128 / cutlass::sizeof_bits::value; // Memory access granularity/alignment of A matrix in units of elements (up to 16 bytes) // B matrix configuration using ElementB = cutlass::half_t; // Element type for B matrix operand using LayoutB = cutlass::layout::ColumnMajor; // Layout type for B matrix operand constexpr int AlignmentB = 128 / cutlass::sizeof_bits::value; // Memory access granularity/alignment of B matrix in units of elements (up to 16 bytes) // C/D matrix configuration using ElementC = cutlass::half_t; // Element type for C and D matrix operands using LayoutC = cutlass::layout::ColumnMajor; // Layout type for C and D matrix operands // Core kernel configurations using ElementAccumulator = float; // Element type for internal accumulation using ArchTag = cutlass::arch::Sm90; // Tag indicating the minimum SM that supports the intended feature using OperatorClass = cutlass::arch::OpClassTensorOp; // Operator class tag using TilesShape = Shape<_128,_128,_64>; // Threadblock-level tile size using ClusterShape = Shape<_1,_2,_1>; // Shape of the threadblocks in a cluster using StageCountType = cutlass::gemm::collective::StageCountAuto; // Stage count maximized based on the tile size using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto; // Kernel to launch based on the default setting in the Collective Builder using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder< ArchTag, OperatorClass, ElementA, LayoutA, AlignmentA, ElementB, LayoutB, AlignmentB, ElementAccumulator, TilesShape, ClusterShape, cutlass::gemm::collective::StageCountAuto, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using CollectiveEpilogue = cutlass::epilogue::collective::DefaultEpilogue< cutlass::gemm::TagToStrideC_t, cutlass::gemm::TagToStrideC_t, cutlass::epilogue::thread::LinearCombination>; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape, // Indicates ProblemShape CollectiveMainloop, CollectiveEpilogue >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter; Gemm gemm_op; cutlass::Status status; // // Define the problem size // int M = 512; int N = 256; int K = 128; float alpha = 1.25f; float beta = -1.25f; // // Allocate device memory // cutlass::DeviceAllocation block_A; cutlass::DeviceAllocation block_B; cutlass::DeviceAllocation block_C; cutlass::DeviceAllocation block_D; using StrideA = typename Gemm::GemmKernel::StrideA; using StrideB = typename Gemm::GemmKernel::StrideB; using StrideC = typename Gemm::GemmKernel::StrideC; using StrideD = typename Gemm::GemmKernel::StrideD; StrideA stride_A; StrideB stride_B; StrideC stride_C; StrideD stride_D; stride_A = cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, Int<1>{})); stride_B = cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(N, K, Int<1>{})); stride_C = cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(M, N, Int<1>{})); stride_D = cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(M, N, Int<1>{})); block_A.reset(M * K); block_B.reset(K * N); block_C.reset(M * N); block_D.reset(M * N); // // Launch GEMM on the device // status = gemm_op({ cutlass::gemm::GemmUniversalMode::kGemm, {M, N, K}, block_A.get(), stride_A, block_B.get(), stride_B, {block_C.get(), stride_C, block_D.get(), stride_D, {alpha, beta}} }); if (status != cutlass::Status::kSuccess) { return -1; } return 0; } ``` # CUTLASS Library The [CUTLASS Library](/tools/library) defines an API for managing and executing collections of compiled kernel instances and launching them from host code without template instantiations in client code. The host-side launch API is designed to be analogous to BLAS implementations for convenience, though its kernel selection procedure is intended only to be functionally sufficient. It may not launch the optimal tile size for a given problem. It chooses the first available kernel whose data types, layouts, and alignment constraints satisfy the given problem. Kernel instances and a data structure describing them are completely available to client applications which may choose to implement their own selection logic. [cuBLAS](https://developer.nvidia.com/cublas) offers the best performance and functional coverage for dense matrix computations on NVIDIA GPUs. The CUTLASS Library is used by the CUTLASS Profiler to manage kernel instances, and it is also used by several SDK examples. * [10_planar_complex](/examples/10_planar_complex/planar_complex.cu) * [11_planar_complex_array](/examples/11_planar_complex_array/planar_complex_array.cu) The CUTLASS Library defines enumerated types describing numeric data types, matrix and tensor layouts, math operation classes, complex transformations, and more. Client applications should specify [`tools/library/include`](/tools/library/include) in their include paths and link against libcutlas_lib.so. The CUTLASS SDK example [10_planar_complex](/examples/10_planar_complex/CMakeLists.txt) specifies its dependency on the CUTLASS Library with the following CMake command. ``` target_link_libraries( 10_planar_complex PRIVATE cutlass_lib cutlass_tools_util_includes ) ``` A sample kernel launch from host-side C++ is shown as follows. ```c++ #include "cutlass/library/library.h" #include "cutlass/library/handle.h" int main() { // // Define the problem size // int M = 512; int N = 256; int K = 128; float alpha = 1.25f; float beta = -1.25f; // // Allocate device memory // cutlass::HostTensor A({M, K}); cutlass::HostTensor B({K, N}); cutlass::HostTensor C({M, N}); float const *ptrA = A.device_data(); float const *ptrB = B.device_data(); float const *ptrC = C.device_data(); float *ptrD = C.device_data(); int lda = A.device_ref().stride(0); int ldb = B.device_ref().stride(0); int ldc = C.device_ref().stride(0); int ldd = D.device_ref().stride(0); // // CUTLASS Library call to execute device GEMM // cutlass::library::Handle handle; // // Launch GEMM on CUDA device. // cutlass::Status status = handle.gemm( M, N, K, cutlass::library::NumericTypeID::kF32, // data type of internal accumulation cutlass::library::NumericTypeID::kF32, // data type of alpha/beta scalars &alpha, // pointer to alpha scalar cutlass::library::NumericTypeID::kF32, // data type of A matrix cutlass::library::LayoutTypeID::kColumnMajor, // layout of A matrix ptrA, // pointer to A matrix in device memory lda, // leading dimension of A matrix cutlass::library::NumericTypeID::kF32, // data type of B matrix cutlass::library::LayoutTypeID::kColumnMajor, // layout of B matrix ptrB, // pointer to B matrix in device memory ldb, // leading dimension of B matrix &beta, // pointer to beta scalar cutlass::library::NumericTypeID::kF32, // data type of C and D matrix ptrC, // pointer to C matrix in device memory ldc, // leading dimension fo C matrix ptrD, // pointer to D matrix in device memory ldd // leading dimension of D matrix ); if (status != cutlass::Status::kSuccess) { return -1; } return 0; } ``` # Example CMake Commands To instantiate all operations supporting all tile sizes, data types, and alignment constraints, specify `-DCUTLASS_LIBRARY_KERNELS=all` when running `cmake`. ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS='70;75;80' -DCUTLASS_LIBRARY_KERNELS=all ``` The above command line generates about twenty thousand kernels targeting NVIDIA Ampere, Turing, and Volta architectures. Compiling thousands of kernels for three different architectures is time-consuming. Additionally, this would also result in a large binary size and on some platforms linker to fail on building the library. Enabling the "unity build" instantiates multiple kernel instances in each compilation unit, thereby reducing binary size and avoiding linker limitations on some platforms. ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" -DCUTLASS_LIBRARY_KERNELS=all -DCUTLASS_UNITY_BUILD_ENABLED=ON ``` It is advised to only compile CUTLASS kernels for NVIDIA architectures one plans on running. Furthermore, kernels can be selectively included in the CUTLASS Library by specifying filter strings and wildcard characters when executing CMake. Several examples are defined below for convenience. They may be combined as a comma-delimited list. Compling only the kernels desired reduces compilation time. ## GEMM CMake Examples **Example.** All GEMM kernels targeting NVIDIA Ampere Tensor Cores. ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS=80 -DCUTLASS_LIBRARY_KERNELS=tensorop*gemm ``` **Example.** All GEMM kernels targeting NVIDIA Turing Tensor Cores. ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS=75 -DCUTLASS_LIBRARY_KERNELS=tensorop*gemm ``` **Example.** All GEMM kernels with FP32 accumulation targeting NVIDIA Ampere, Turing, and Volta architectures. ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" -DCUTLASS_LIBRARY_KERNELS=s*gemm ``` **Example.** All kernels which expect A and B to be column-major or row-major targeting NVIDIA Ampere, Turing, and Volta architectures. ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" -DCUTLASS_LIBRARY_KERNELS=gemm*nn,gemm*tt ``` **Example.** All planar complex GEMM variants targeting NVIDIA Ampere, Turing, and Volta architectures. ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" -DCUTLASS_LIBRARY_KERNELS=planar_complex ``` ## Convolution CMake Examples **Example.** All convolution kernels targeting NVIDIA Ampere's 16816 Tensor Core operation ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS='80' -DCUTLASS_LIBRARY_KERNELS=s16816fprop,s16816dgrad,s16816wgrad ``` **Example.** All forward propagation (fprop) convolution kernels targeting CUDA Cores for multiple NVIDIA architectures ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS='50;60;61;70;75;80' -DCUTLASS_LIBRARY_KERNELS=sfprop ``` **Example.** All forward propagation (fprop) convolution kernels with FP32 accumulation and FP16 input targeting NVIDIA Ampere's 16816 Tensor Core operation ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS='80' -DCUTLASS_LIBRARY_KERNELS=s16816fprop_*_f16 ``` **Example.** All backward weight gradient (wgrad) convolution kernels with FP32 accumulation, FP16 input, and optimized global memory iterator targeting NVIDIA Ampere, Turing, and Volta Tensor Core operations ```bash $ cmake .. -DCUTLASS_NVCC_ARCHS='70;75;80' -DCUTLASS_LIBRARY_KERNELS=tensorop*s*wgrad_optimized_f16 ``` # Copyright Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. SPDX-License-Identifier: BSD-3-Clause ``` Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ```