import math from functools import partial import pytest import torch import torch.nn.functional as F from einops import rearrange from flash_attn.ops.fused_dense import FusedDense, FusedMLP @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) @pytest.mark.parametrize("return_residual", [False, True]) @pytest.mark.parametrize("has_bias", [True, False]) @pytest.mark.parametrize("out_features", [1024, 4096]) @pytest.mark.parametrize("in_features", [1024, 4096]) def test_fused_linear_bias(in_features, out_features, has_bias, return_residual, dtype): device = "cuda" rtol, atol = (3e-3, 1e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 x_pt = torch.randn( batch_size, seqlen, in_features, device=device, dtype=dtype, requires_grad=True ) x = x_pt.detach().clone().requires_grad_() model_pt = torch.nn.Linear(in_features, out_features, bias=has_bias, device=device, dtype=dtype) model = FusedDense( in_features, out_features, bias=has_bias, return_residual=return_residual, device=device, dtype=dtype, ) with torch.no_grad(): model.weight.copy_(model_pt.weight) if has_bias: model.bias.copy_(model_pt.bias) out_pt = model_pt(x_pt) if not return_residual: out = model(x) else: out, x_copy = model(x) x_copy = ( x_copy[..., :out_features] if out_features < in_features else F.pad(x_copy, (0, out_features - in_features)) ) x_pt_copy = ( x_pt[..., :out_features] if out_features < in_features else F.pad(x_pt, (0, out_features - in_features)) ) # Just add some random function of the residual out_pt = out_pt + F.gelu(x_pt_copy) out = out + F.gelu(x_copy) # with torch.no_grad(): # out_fl = F.linear(x_pt.float(), model.weight.float(), model.bias.float()).half() assert torch.allclose(out, out_pt, rtol=rtol, atol=atol) # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(out) / 32 out_pt.backward(g) out.backward(g) assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose(model.weight.grad, model_pt.weight.grad, rtol=rtol, atol=atol * 10) if has_bias: assert torch.allclose(model.bias.grad, model_pt.bias.grad, rtol=rtol, atol=atol * 5) @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize("heuristic", ["auto", -1]) # @pytest.mark.parametrize('heuristic', ['auto']) @pytest.mark.parametrize("checkpoint_lvl", [0, 1, 2]) # @pytest.mark.parametrize('checkpoint_lvl', [1]) @pytest.mark.parametrize("return_residual", [False, True]) # @pytest.mark.parametrize('return_residual', [False]) @pytest.mark.parametrize("has_bias2", [True, False]) @pytest.mark.parametrize("has_bias1", [True, False]) # @pytest.mark.parametrize('has_bias2', [True]) # @pytest.mark.parametrize('has_bias1', [True]) @pytest.mark.parametrize("activation", ["gelu_approx", "relu"]) # @pytest.mark.parametrize('activation', ['relu']) @pytest.mark.parametrize("out_features", [1024, 4096]) @pytest.mark.parametrize("in_features", [1024, 4096]) # @pytest.mark.parametrize('out_features', [4096]) # @pytest.mark.parametrize('in_features', [1024]) def test_fused_mlp( in_features, out_features, activation, has_bias1, has_bias2, return_residual, checkpoint_lvl, heuristic, dtype, ): device = "cuda" rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 x_pt = torch.randn( batch_size, seqlen, in_features, device=device, dtype=dtype, requires_grad=True ) x = x_pt.detach().clone().requires_grad_() model_pt_fc1 = torch.nn.Linear( in_features, out_features, bias=has_bias1, device=device, dtype=dtype ) model_pt_fc2 = torch.nn.Linear( out_features, in_features, bias=has_bias2, device=device, dtype=dtype ) model = FusedMLP( in_features, out_features, in_features, activation=activation, bias1=has_bias1, bias2=has_bias2, return_residual=return_residual, checkpoint_lvl=checkpoint_lvl, heuristic=heuristic, device=device, dtype=dtype, ) with torch.no_grad(): model.fc1.weight.copy_(model_pt_fc1.weight) if has_bias1: model.fc1.bias.copy_(model_pt_fc1.bias) model.fc2.weight.copy_(model_pt_fc2.weight) if has_bias2: model.fc2.bias.copy_(model_pt_fc2.bias) activation_fn = ( partial(F.gelu, approximate="tanh") if activation == "gelu_approx" else partial(F.relu, inplace=True) ) out_pt = model_pt_fc2(activation_fn(model_pt_fc1(x_pt))) if not return_residual: out = model(x) else: out, x_copy = model(x) # Just add some random function of the residual out_pt = out_pt + F.gelu(x_pt) out = out + F.gelu(x_copy) assert torch.allclose(out, out_pt, rtol=rtol, atol=atol) # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(out) / 32 out_pt.backward(g) out.backward(g) # The error for relu is higher still if activation == "relu": atol = 1e-1 if dtype == torch.bfloat16 else 5e-2 assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose( model.fc1.weight.grad, model_pt_fc1.weight.grad, rtol=rtol, atol=atol * 10 ) if has_bias1: assert torch.allclose(model.fc1.bias.grad, model_pt_fc1.bias.grad, rtol=rtol, atol=atol * 5) assert torch.allclose( model.fc2.weight.grad, model_pt_fc2.weight.grad, rtol=rtol, atol=atol * 10 ) if has_bias2: assert torch.allclose(model.fc2.bias.grad, model_pt_fc2.bias.grad, rtol=rtol, atol=atol * 5)