from fastapi import FastAPI from pydantic import BaseModel # Assuming Llama class has been correctly imported and set up from llama_cpp import Llama # Model loading with specified path and configuration llm = Llama( model_path="Meta-Llama-3-8B-Instruct.Q4_K_M.gguf", # Update the path as necessary n_ctx=4096, # Maximum number of tokens for context (input + output) n_threads=2, # Number of CPU cores used ) # Pydantic object for validation class Validation(BaseModel): user_prompt: str system_prompt: str max_tokens = 1024 temperature = 0.001 top_p = 0.9 repeat_penalty = 1.1 top_k = 40 # FastAPI application initialization app = FastAPI() # Endpoint for generating responses @app.post("/generate_response") async def generate_response(item: Validation): # Construct the complete prompt using the given system and user prompts prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> \n { item.system_prompt }<|eot_id|> \n <|start_header_id|>user<|end_header_id|> { item.user_prompt }<|eot_id|> \n <|start_header_id|>assistant<|end_header_id|>""" # Call the Llama model to generate a response output = llm(prompt, max_tokens = item.max_tokens,temperature = item.temperature , top_p = item.top_p , repeat_penalty = item.repeat_penalty, top_k = item.top_k ,echo=True) # Update parameters as needed # Extract and return the text from the response return output['choices'][0]['text']