from fastapi import FastAPI from pydantic import BaseModel # Assuming Llama class has been correctly imported and set up from llama_cpp import Llama # Model loading with specified path and configuration llm = Llama( model_path="Meta-Llama-3-8B-Instruct.Q4_K_M.gguf", # Update the path as necessary n_ctx=4096, # Maximum number of tokens for context (input + output) n_threads=4, # Number of CPU cores used ) # Pydantic object for validation class Validation(BaseModel): user_prompt: str # User's input prompt system_prompt: str # System's guiding prompt # FastAPI application initialization app = FastAPI() # Endpoint for generating responses @app.post("/generate_response") async def generate_response(item: Validation): # Construct the complete prompt using the given system and user prompts prompt = f"[INST] <> \n {item.system_prompt}<> \n {item.user_prompt} [/INST]" # Call the Llama model to generate a response output = llm(prompt, max_tokens=1024, stop=["Q:", "\n"], echo=True) # Update parameters as needed # Extract and return the text from the response return output['choices'][0]['text']