from fastapi import FastAPI from pydantic import BaseModel # Assuming Llama class has been correctly imported and set up from llama_cpp import Llama # Model loading with specified path and configuration llm = Llama( model_path="Meta-Llama-3-8B-Instruct.Q4_K_M.gguf", # Update the path as necessary n_ctx=4096, # Maximum number of tokens for context (input + output) n_threads=4, # Number of CPU cores used ) # Pydantic object for validation class Validation(BaseModel): user_prompt: str # User's input prompt system_prompt: str # System's guiding prompt # FastAPI application initialization app = FastAPI() # Endpoint for generating responses @app.post("/generate_response") async def generate_response(item: Validation): # Construct the complete prompt using the given system and user prompts prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> \n { item.system_prompt }<|eot_id|> \n <|start_header_id|>user<|end_header_id|> { item.user_prompt }<|eot_id|> \n <|start_header_id|>assistant<|end_header_id|>""" # Call the Llama model to generate a response output = llm('Q: what is gravity? A:', max_tokens=1024, stop=["Q:", "\n"], echo=True) # Update parameters as needed # Extract and return the text from the response return output