Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
|
4 |
+
# Assuming Llama class has been correctly imported and set up
|
5 |
+
from llama_cpp import Llama
|
6 |
+
|
7 |
+
# Model loading with specified path and configuration
|
8 |
+
llm = Llama(
|
9 |
+
model_path="Anoop03031988/Phi-3-mini-4k-instruct-text-to-sql-GGUF", # Update the path as necessary
|
10 |
+
n_ctx=4096, # Maximum number of tokens for context (input + output)
|
11 |
+
n_threads=2, # Number of CPU cores used
|
12 |
+
)
|
13 |
+
|
14 |
+
# Pydantic object for validation
|
15 |
+
class Validation(BaseModel):
|
16 |
+
user_prompt: str
|
17 |
+
system_prompt: str
|
18 |
+
max_tokens: int = 1024
|
19 |
+
temperature: float = 0.01
|
20 |
+
|
21 |
+
# FastAPI application initialization
|
22 |
+
app = FastAPI()
|
23 |
+
|
24 |
+
# Endpoint for generating responses
|
25 |
+
@app.post("/generate_response")
|
26 |
+
async def generate_response(item: Validation):
|
27 |
+
# Construct the complete prompt using the given system and user prompts
|
28 |
+
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> \n
|
29 |
+
{ item.system_prompt }<|eot_id|> \n <|start_header_id|>user<|end_header_id|>
|
30 |
+
{ item.user_prompt }<|eot_id|> \n <|start_header_id|>assistant<|end_header_id|>"""
|
31 |
+
|
32 |
+
# Call the Llama model to generate a response
|
33 |
+
output = llm(prompt, max_tokens = item.max_tokens,temperature = item.temperature, echo=True)
|
34 |
+
|
35 |
+
# Extract and return the text from the response
|
36 |
+
return output['choices'][0]['text']
|