Do0rMaMu commited on
Commit
73bce0b
·
verified ·
1 Parent(s): f2e8041

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +36 -0
main.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI
2
+ from pydantic import BaseModel
3
+
4
+ # Assuming Llama class has been correctly imported and set up
5
+ from llama_cpp import Llama
6
+
7
+ # Model loading with specified path and configuration
8
+ llm = Llama(
9
+ model_path="Anoop03031988/Phi-3-mini-4k-instruct-text-to-sql-GGUF", # Update the path as necessary
10
+ n_ctx=4096, # Maximum number of tokens for context (input + output)
11
+ n_threads=2, # Number of CPU cores used
12
+ )
13
+
14
+ # Pydantic object for validation
15
+ class Validation(BaseModel):
16
+ user_prompt: str
17
+ system_prompt: str
18
+ max_tokens: int = 1024
19
+ temperature: float = 0.01
20
+
21
+ # FastAPI application initialization
22
+ app = FastAPI()
23
+
24
+ # Endpoint for generating responses
25
+ @app.post("/generate_response")
26
+ async def generate_response(item: Validation):
27
+ # Construct the complete prompt using the given system and user prompts
28
+ prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> \n
29
+ { item.system_prompt }<|eot_id|> \n <|start_header_id|>user<|end_header_id|>
30
+ { item.user_prompt }<|eot_id|> \n <|start_header_id|>assistant<|end_header_id|>"""
31
+
32
+ # Call the Llama model to generate a response
33
+ output = llm(prompt, max_tokens = item.max_tokens,temperature = item.temperature, echo=True)
34
+
35
+ # Extract and return the text from the response
36
+ return output['choices'][0]['text']