Update main.py
Browse files
main.py
CHANGED
@@ -11,10 +11,9 @@ llm = Llama(
|
|
11 |
|
12 |
# Pydantic object for validation
|
13 |
class Validation(BaseModel):
|
14 |
-
user_prompt: str
|
15 |
-
|
16 |
-
|
17 |
-
temperature: float = 0.01
|
18 |
|
19 |
# FastAPI application initialization
|
20 |
app = FastAPI()
|
@@ -22,11 +21,8 @@ app = FastAPI()
|
|
22 |
# Endpoint for generating responses
|
23 |
@app.post("/generate_response")
|
24 |
async def generate_response(item: Validation):
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
# Call the Llama model to generate a response
|
29 |
-
output = llm(prompt, max_tokens=item.max_tokens, temperature=item.temperature, echo=True)
|
30 |
|
31 |
# Extract and return the text from the response
|
32 |
return output['choices'][0]['text']
|
|
|
11 |
|
12 |
# Pydantic object for validation
|
13 |
class Validation(BaseModel):
|
14 |
+
user_prompt: str # This will be the direct SQL query request or relevant prompt
|
15 |
+
max_tokens: int = 1024
|
16 |
+
temperature: float = 0.01
|
|
|
17 |
|
18 |
# FastAPI application initialization
|
19 |
app = FastAPI()
|
|
|
21 |
# Endpoint for generating responses
|
22 |
@app.post("/generate_response")
|
23 |
async def generate_response(item: Validation):
|
24 |
+
# Call the Llama model to generate a response directly based on the user's prompt
|
25 |
+
output = llm(item.user_prompt, max_tokens=item.max_tokens, temperature=item.temperature, echo=False)
|
|
|
|
|
|
|
26 |
|
27 |
# Extract and return the text from the response
|
28 |
return output['choices'][0]['text']
|