from fastapi import FastAPI from pydantic import BaseModel # Assuming Llama class has been correctly imported and set up from llama_cpp import Llama # Model loading with specified path and configuration llm = Llama( model_path="phi-3-mini-4k-instruct-text-to-sql.Q4_K.gguf", # Update the path as necessary n_ctx=4096, # Maximum number of tokens for context (input + output) n_threads=2, # Number of CPU cores used ) # Pydantic object for validation class Validation(BaseModel): user_prompt: str system_prompt: str max_tokens: int = 1024 temperature: float = 0.01 # FastAPI application initialization app = FastAPI() # Endpoint for generating responses @app.post("/generate_response") async def generate_response(item: Validation): # Construct the complete prompt using the given system and user prompts prompt = f"""\nSystem\n { item.system_prompt } \nQuestion\n { item.user_prompt }""" # Call the Llama model to generate a response output = llm(prompt, max_tokens = item.max_tokens,temperature = item.temperature, echo=True) # Extract and return the text from the response return output['choices'][0]['text']