from fastapi import FastAPI from pydantic import BaseModel from llama_cpp import Llama # Model loading with specified path and configuration llm = Llama( model_path="phi-3-mini-4k-instruct.Q4_K.gguf", # Update the path as necessary n_ctx=4096, n_threads=2, ) # Pydantic object for validation class Validation(BaseModel): user_prompt: str system_prompt: str max_tokens: int = 1024 temperature: float = 0.01 # FastAPI application initialization app = FastAPI() # Endpoint for generating responses @app.post("/generate_response") async def generate_response(item: Validation): # Construct the complete prompt using the given system and user prompts in the required format prompt = f"<|user|>\n{item.system_prompt}\n<|end|>\n<|user|>\n{item.user_prompt}\n<|end|>\n<|assistant|>" # Call the Llama model to generate a response output = llm(prompt, max_tokens=item.max_tokens, temperature=item.temperature, echo=True) # Extract and return the text from the response return output['choices'][0]['text']