from fastapi import FastAPI from pydantic import BaseModel from llama_cpp import Llama # Model loading with specified path and configuration llm = Llama( model_path="../Llama-3.2-3B-Instruct-Q8_0.gguf", # Update the path as necessary n_ctx=4096, n_threads=2, ) # Pydantic object for validation class Validation(BaseModel): user_prompt: str # This will be the direct SQL query request or relevant prompt max_tokens: int = 1024 temperature: float = 0.01 # FastAPI application initialization app = FastAPI() # Endpoint for generating responses @app.post("/generate_response") async def generate_response(item: Validation): # Call the Llama model to generate a response directly based on the user's prompt output = llm(item.user_prompt, max_tokens=item.max_tokens, temperature=item.temperature, echo=False) # Extract and return the text from the response return output['choices'][0]['text']