File size: 5,821 Bytes
72268ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from .base import BaseAWQForCausalLM
from typing import Dict
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaForCausalLM

class LlamaAWQForCausalLM(BaseAWQForCausalLM):
    layer_type = "LlamaDecoderLayer"
    max_new_tokens_key = "max_position_embeddings"

    @staticmethod
    def fuse_layers(model: LlamaForCausalLM, quant_config: Dict):
        fuser = LlamaFuser(model, quant_config)
        fuser.fuse_attention()
        fuser.fuse_rmsnorm()
        fuser.fuse_mlp()

    @staticmethod
    def get_model_layers(model: LlamaForCausalLM):
        return model.model.layers
    
    @staticmethod
    def get_act_for_scaling(module: LlamaDecoderLayer):
        return dict(
            is_scalable=False
        )
    
    @staticmethod
    def move_embed(model: LlamaForCausalLM, device: str):
        model.model.embed_tokens = model.model.embed_tokens.to(device)
    
    @staticmethod
    def get_layers_for_scaling(module: LlamaDecoderLayer, input_feat, module_kwargs):
        layers = []

        # attention input
        layers.append(dict(
            prev_op=module.input_layernorm,
            layers=[module.self_attn.q_proj,
                    module.self_attn.k_proj, module.self_attn.v_proj],
            inp=input_feat['self_attn.q_proj'],
            module2inspect=module.self_attn, kwargs=module_kwargs,
        ))

        # attention out
        # Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
        if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
            layers.append(dict(
                prev_op=module.self_attn.v_proj,
                layers=[module.self_attn.o_proj],
                inp=input_feat['self_attn.o_proj'],
            ))
        
        # linear 1
        layers.append(dict(
            prev_op=module.post_attention_layernorm,
            layers=[module.mlp.gate_proj, module.mlp.up_proj],
            inp=input_feat['mlp.gate_proj'],
            module2inspect=module.mlp,
        ))

        # linear 2
        layers.append(dict(
            prev_op=module.mlp.up_proj,
            layers=[module.mlp.down_proj],
            inp=input_feat['mlp.down_proj'],
        ))

        return layers

import torch
from typing import List, Tuple, Union
from awq.utils.utils import set_module_name
from awq.modules.fused.mlp import QuantLlamaMLP
from awq.modules.fused.attn import QuantAttentionFused
from awq.modules.fused.norm import FasterTransformerRMSNorm
from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaRMSNorm, LlamaMLP

class LlamaFuser:
    def __init__(self, model, quant_config):
        self.model = model
        self.quant_config = quant_config

        self.attention_modules: List[Tuple[str, LlamaAttention]] = [
            (name, module) for name, module in self.model.named_modules()
            if isinstance(module, LlamaAttention)
        ]

        self.rmsnorm_modules: List[Tuple[str, LlamaRMSNorm]] = [
            (name, module) for name, module in self.model.named_modules()
            if isinstance(module, LlamaRMSNorm)
        ]
        
        self.mlp_modules: List[Tuple[str, LlamaMLP]] = [
            (name, module) for name, module in self.model.named_modules()
            if isinstance(module, LlamaMLP)
        ]
    
    def fuse_attention(self):
        for name, module in self.attention_modules:
            qkv_layer: Union[WQLinear_GEMM, WQLinear_GEMV] = self._fuse_qkv(module)
            attn = QuantAttentionFused(
                module.hidden_size,
                module.num_heads,
                module.num_key_value_heads,
                qkv_layer, 
                module.o_proj,
                next(iter(qkv_layer.state_dict().values())).device,
                self.model.config.max_new_tokens
            )
            set_module_name(self.model, name, attn)
    
    def _fuse_qkv(self, module: LlamaAttention):
        q_proj, k_proj, v_proj = module.q_proj, module.k_proj, module.v_proj
        bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None

        if isinstance(q_proj, WQLinear_GEMV):
            q_linear = WQLinear_GEMV
        else:
            q_linear = WQLinear_GEMM

        qkv_layer = q_linear(
            q_proj.w_bit,
            q_proj.group_size,
            q_proj.in_features,
            q_proj.out_features + k_proj.out_features + v_proj.out_features,
            q_proj.bias is not None,
            next(iter(module.state_dict().values())).device
        )

        if isinstance(qkv_layer, WQLinear_GEMV):
            qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=0)
            qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=0)
            qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=0)
            qkv_layer.split_k_iters = q_proj.split_k_iters
        else:
            qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
            qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
            qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
        
        qkv_layer.bias = bias

        return qkv_layer

    def fuse_rmsnorm(self):
        for name, module in self.rmsnorm_modules:
            norm = FasterTransformerRMSNorm(module.weight, module.variance_epsilon)
            set_module_name(self.model, name, norm)

    def fuse_mlp(self):
        for name, module in self.mlp_modules:
            mlp = QuantLlamaMLP(module.gate_proj, module.down_proj, module.up_proj)
            set_module_name(self.model, name, mlp)