File size: 8,868 Bytes
72268ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from awq.modules.fused.cache import WindowedCache
from awq.utils.fused_utils import get_attention_shapes

try:
    import ft_inference_engine
    FT_INSTALLED = True
except:
    FT_INSTALLED = False

class RoPE(nn.Module):
    def __init__(self, hidden_size, n_heads, max_seq_len, device):
        super(RoPE, self).__init__()
        
        self.freqs_cis = nn.Parameter(
            self.precompute_freqs_cis(hidden_size // n_heads, max_seq_len * 2).to(device),
            requires_grad=False
        )

    @staticmethod
    def precompute_freqs_cis(dim: int, end: int, theta=10000.0):
        freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
        t = torch.arange(end)
        freqs = torch.outer(t, freqs).float()
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
        return freqs_cis

    @staticmethod
    def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
        ndim = x.ndim
        assert 0 <= 1 < ndim
        assert freqs_cis.shape == (x.shape[1], x.shape[-1])
        shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return freqs_cis.view(*shape)

    def forward(self, xq: torch.Tensor, xk: torch.Tensor, start_pos: int, seqlen: int):
        xq_ = torch.view_as_complex(
            xq.float().reshape(*xq.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
        )
        xk_ = torch.view_as_complex(
            xk.float().reshape(*xk.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
        )
        freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
        freqs_cis = self.reshape_for_broadcast(freqs_cis, xq_).to(xq_.device)
        
        xq_out = torch.view_as_real(xq_ * freqs_cis).transpose(-2, -1).flatten(3)
        xk_out = torch.view_as_real(xk_ * freqs_cis).transpose(-2, -1).flatten(3)
        
        return xq_out.type_as(xq), xk_out.type_as(xk)

class ALiBi(nn.Module):
    def __init__(self, n_heads, max_seq_len, device, alibi_bias_max=8):
        super(ALiBi, self).__init__()
        
        # Initialize ALiBi slopes and bias
        slopes, bias = self.build_alibi_bias(n_heads, max_seq_len, alibi_bias_max=alibi_bias_max)
        self.slopes = nn.Parameter(slopes.float().to(device), requires_grad=False)
        self.bias = nn.Parameter(bias.float().to(device), requires_grad=False)

    @staticmethod
    def gen_slopes(n_heads, alibi_bias_max=8):
        _n_heads = 2 ** math.ceil(math.log2(n_heads))
        m = torch.arange(1, _n_heads + 1, dtype=torch.float32)
        m = m.mul(alibi_bias_max / _n_heads)
        slopes = 1.0 / torch.pow(2, m)
        
        if _n_heads != n_heads:
            slopes = torch.cat([slopes[1::2], slopes[::2]])[:n_heads]
            
        return slopes.view(1, n_heads, 1, 1)

    @staticmethod
    def build_alibi_bias(n_heads, seq_len, alibi_bias_max=8, dtype=torch.float32):
        alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32).view(1, 1, 1, seq_len)
        slopes = ALiBi.gen_slopes(n_heads, alibi_bias_max)
        alibi_bias = alibi_bias * slopes
        slopes = slopes.squeeze(0).squeeze(-1).squeeze(-1)
        return slopes.to(dtype=dtype), alibi_bias.to(dtype=dtype)
    
    def forward(self, scores, seqlen):
        scores += self.bias[..., :seqlen]
        return scores

class QuantAttentionFused(nn.Module):
    def __init__(self, hidden_size, n_heads, n_kv_heads, qkv_layer, o_proj, dev, max_seq_len, 
                       use_alibi=False, attention_shapes=None):
        super().__init__()
        self.hidden_size = hidden_size
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
        self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0
        self.head_dim = self.hidden_size // n_heads
        self.qkv_proj = qkv_layer
        self.o_proj = o_proj
        self.start_pos = 0
        self.use_alibi = use_alibi
        self.cache_batch_size = int(os.getenv("AWQ_BATCH_SIZE", "1"))
        self.max_seq_len = max_seq_len

        # attention shapes for self attention
        self.attention_shapes = get_attention_shapes(
            attention_shapes, max_seq_len, self.cache_batch_size, n_heads, n_kv_heads, self.head_dim
        )
        # cache store that rolls cache
        self.cache = WindowedCache(
            self.attention_shapes["cache_v"], self.attention_shapes["cache_k"], dev
        )

        if use_alibi:
            self.alibi = ALiBi(n_heads, max_seq_len, dev)
            self.rotary_dim = 0
            self.is_neox = False
        else:
            self.alibi = None
            self.rope = RoPE(hidden_size, n_heads, max_seq_len, dev)
            self.rotary_dim = self.head_dim
            self.is_neox = True
    
    def forward(self, hidden_states:torch.Tensor, attention_mask=None, *args, **kwargs):
        bsz, seqlen, _ = hidden_states.shape
        if bsz != self.cache_batch_size:
            raise RuntimeError(
                f"Batch size is incorrectly set - input batch size {bsz}, kv-cache batch size {self.cache_batch_size}. "
                f"Use: AutoAWQForCausalLM.from_quantized(batch_size={bsz})"
            )

        if self.start_pos > self.max_seq_len or self.start_pos + seqlen > self.max_seq_len:
            excess_length = self.start_pos + seqlen - self.max_seq_len
            self.start_pos = self.cache.roll_kv(excess_length, self.start_pos)
            
        xqkv = self.qkv_proj(hidden_states)
        xqkv = xqkv.view((bsz, seqlen) + self.attention_shapes["xqkv_view"])
        
        xq = self.attention_shapes["xq_slice"](xqkv)
        xk = self.attention_shapes["xk_slice"](xqkv)
        xv = self.attention_shapes["xv_slice"](xqkv)

        if seqlen > 1 or not FT_INSTALLED:
            xq = xq.view((bsz, seqlen) + self.attention_shapes["xq_view"])
            xk = xk.view((bsz, seqlen) + self.attention_shapes["xk_view"])
            xv = xv.view((bsz, seqlen) + self.attention_shapes["xv_view"])

            if not self.use_alibi:
                xq, xk = self.rope.forward(xq, xk, self.start_pos, seqlen)

            self.cache.to(xq)

            values_store = xv.transpose(2, 1)
            keys_store = (
                xk.reshape((bsz, seqlen) + self.attention_shapes["xk_reshape"])
                .permute(0, 2, 3, 1, 4)
                .contiguous()
            )
            
            self.cache.update_kv(values_store, keys_store, bsz, self.start_pos, seqlen)

            if seqlen == 1:
                xv, xk = self.cache.get_kv(bsz, self.start_pos, seqlen, self.head_dim)
            
            keys = xk
            values = xv

            if self.n_kv_groups != 0:
                keys = torch.repeat_interleave(keys, dim=2, repeats=self.n_kv_groups)
                values = torch.repeat_interleave(values, dim=2, repeats=self.n_kv_groups)
            
            xq = xq.transpose(1, 2)
            keys = keys.transpose(1, 2)
            values = values.transpose(1, 2)
            scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)

            if self.use_alibi:
                scores = self.alibi.forward(scores, seqlen)

            if attention_mask is not None:
                scores = scores + attention_mask  # (bs, n_local_heads, slen, cache_len + slen)
                
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            output = torch.matmul(scores, values)  # (bs, n_local_heads, slen, head_dim)
            attention_weight = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
        else:
            xq = xq.view((bsz,) + self.attention_shapes["single_xq_view"])
            xk = xk.view((bsz,) + self.attention_shapes["single_xk_view"])
            xv = xv.view((bsz,) + self.attention_shapes["single_xv_view"])

            alibi_slopes = self.alibi.slopes if self.alibi is not None else None
            attention_weight = ft_inference_engine.single_query_attention(
                xq, # query
                xk, # key
                xv, # value
                self.cache.k, # key cache
                self.cache.v, # value cache
                None, # length per sample
                alibi_slopes, # alibi slopes
                self.start_pos, # timestep
                self.rotary_dim, # rotary embedding dimension
                10000, # rotary embedding base
                self.is_neox, # is neox
            )
            attention_weight = attention_weight.reshape(bsz, 1, -1)
        
        attn_output = self.o_proj(attention_weight)
        self.start_pos += seqlen

        # past_key_value is replaced with cache_v, cache_k, returning empty data
        past_key_value = [torch.Tensor([ [ [[0]], [[0]], [[0]] ] ])]
        return attn_output, attention_weight, past_key_value