File size: 13,362 Bytes
72268ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import torch
import logging
import functools
import torch.nn as nn
from tqdm import tqdm
from typing import Dict, List
from collections import defaultdict
from awq.utils.utils import clear_memory
from awq.utils.calib_data import get_calib_dataset
from awq.quantize.scale import apply_scale, apply_clip
from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV
from awq.utils.module import append_str_prefix, get_op_name, get_named_linears, set_op_by_name
class AwqQuantizer:
def __init__(self, awq_model, model, tokenizer, w_bit, group_size, version,
calib_data, split, text_column) -> None:
self.awq_model = awq_model
self.model = model
self.tokenizer = tokenizer
self.w_bit = w_bit
self.group_size = group_size
self.version = version
self.calib_data = calib_data
self.split = split
self.text_column = text_column
self.modules, self.module_kwargs, self.inps = self.init_quant()
def pseudo_quantize_tensor(self, w: torch.Tensor, get_scale_zp=False):
org_w_shape = w.shape
if self.group_size > 0:
assert org_w_shape[-1] % self.group_size == 0
w = w.reshape(-1, self.group_size)
assert w.dim() == 2
# zero point quantization
max_val = w.amax(dim=1, keepdim=True)
min_val = w.amin(dim=1, keepdim=True)
max_int = 2 ** self.w_bit - 1
min_int = 0
scales = (max_val - min_val).clamp(min=1e-5) / max_int
zeros = (-torch.round(min_val / scales)).clamp_(min_int, max_int)
assert torch.isnan(scales).sum() == 0
assert torch.isnan(w).sum() == 0
w = (torch.clamp(torch.round(w / scales) + zeros, min_int, max_int) - zeros) * scales
assert torch.isnan(w).sum() == 0
w = w.reshape(org_w_shape)
if get_scale_zp:
return w, scales.view(w.shape[0], -1), zeros.view(w.shape[0], -1)
else:
return w
def quantize(self):
for i in tqdm(range(len(self.modules)), desc="AWQ"):
# [STEP 1]: Get layer, extract linear modules, extract input features
self.modules[i] = self.modules[i].cuda()
named_linears = get_named_linears(self.modules[i])
input_feat = self._get_input_feat(self.modules[i], named_linears)
clear_memory()
# [STEP 2]: Compute and apply scale list
module_config: List[Dict] = self.awq_model.get_layers_for_scaling(
self.modules[i], input_feat, self.module_kwargs
)
scales_list = [self._search_best_scale(self.modules[i], **layer) for layer in module_config]
apply_scale(self.modules[i], scales_list, input_feat_dict=input_feat)
scales_list = append_str_prefix(scales_list, get_op_name(self.model, self.modules[i]) + ".")
# [STEP 3]: Compute and apply clipping list
clip_list = self._search_best_clip(self.modules[i], named_linears, input_feat)
apply_clip(self.modules[i], clip_list)
clip_list = append_str_prefix(clip_list, get_op_name(self.model, self.modules[i]) + ".")
# [STEP 4]: Quantize weights
self._apply_quant(self.modules[i], named_linears)
clear_memory()
def _apply_quant(self, module, named_linears: Dict[str, nn.Linear]):
for name, linear_layer in named_linears.items():
# NOTE: small regression in perplexity if linear layer uses .cpu().float()
linear_layer = linear_layer.cuda().half()
linear_layer.weight.data, scales, zeros = self.pseudo_quantize_tensor(
linear_layer.weight.data,
get_scale_zp=True
)
if self.version == 'GEMM':
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
q_linear_module = WQLinear_GEMM
elif self.version == 'GEMV':
q_linear_module = WQLinear_GEMV
q_linear = q_linear_module.from_linear(
linear=linear_layer,
w_bit=self.w_bit,
group_size=self.group_size,
init_only=False,
scales=scales,
zeros=zeros
)
linear_layer.cpu()
q_linear.to(next(module.parameters()).device)
set_op_by_name(module, name, q_linear)
clear_memory()
@torch.no_grad()
def _search_best_scale(self, module, prev_op, layers: List[nn.Linear], inp: torch.Tensor, module2inspect=None, kwargs={}):
if module2inspect is None:
assert len(layers) == 1
module2inspect = layers[0]
if "use_cache" in kwargs:
kwargs.pop("use_cache")
# Put x on the right device
inp = inp.to(next(module2inspect.parameters()).device)
# [STEP 1]: Compute maximum of weight
weight = torch.cat([_m.weight for _m in layers], dim=0)
org_shape = weight.shape
weight = weight.view(-1, self.group_size)
w_scale = weight.abs() / weight.abs().amax(dim=1, keepdim=True)
w_scale = w_scale.view(org_shape)
w_max = w_scale.mean(0)
clear_memory(weight)
# [STEP 2]: Compute maximum of x
x_max = inp.abs().view(-1, inp.shape[-1]).mean(0)
# [STEP 3]: Compute output of module
with torch.no_grad():
fp16_output = module2inspect(inp, **kwargs)
if isinstance(fp16_output, tuple):
fp16_output = fp16_output[0]
# [STEP 4]: Compute loss
best_scales = self._compute_best_scale(
inp, w_max, x_max, module2inspect,
layers, fp16_output, kwargs
)
return (get_op_name(module, prev_op), tuple([get_op_name(module, m) for m in layers]), best_scales)
def _compute_best_scale(self, x, w_max, x_max, module2inspect, linears2scale: List[nn.Linear],
fp16_output, kwargs={}):
"""
Compute loss and select best scales
L(s) = || Q(W * s) (s^-1 * X) - W * X ||
Q: weight quantization function | pseudo_quantize_tensor(W * s)
X: inputs from calib dataset | X
W: original weights in FP16 | layer
s: per channel scaling factor | s^-1 * X
"""
n_grid = 20
history = []
best_ratio = -1
best_scales = None
best_error = float('inf')
org_sd = {k: v.cpu() for k, v in module2inspect.state_dict().items()}
device = x.device
x_max = x_max.view(-1).to(device)
w_max = w_max.view(-1).to(device)
for ratio in range(n_grid):
# create new scales
ratio = ratio / n_grid
# NOTE: s^-1 * x is fused here, according to paper
scales = (x_max.pow(ratio) / w_max.pow(1-ratio)).clamp(min=1e-4)
scales = scales / (scales.max() * scales.min()).sqrt()
scales_view = scales.view(1, -1).to(device)
# Q(W * s)
for fc in linears2scale:
fc.weight.mul_(scales_view)
fc.weight.data = self.pseudo_quantize_tensor(fc.weight.data) / scales_view
# W * X
int_w_output = module2inspect(x, **kwargs)
if isinstance(int_w_output, tuple):
int_w_output = int_w_output[0]
# compute mean squared error (L2 norm)
loss = (fp16_output - int_w_output).float().pow(2).mean().item() # NOTE: float prevents overflow
history.append(loss)
if loss < best_error:
best_error = loss
best_ratio = ratio
best_scales = scales.clone()
module2inspect.load_state_dict(org_sd)
if best_ratio == -1:
logging.debug(history)
raise Exception
assert torch.isnan(best_scales).sum() == 0, best_scales
return best_scales.detach().cpu()
@torch.no_grad()
def _search_best_clip(self, layer, named_linears, input_feat):
clip_list = []
avoid_clipping = ["q_", "k_", "query", "key", "Wqkv"]
for name in named_linears:
# due to qk bmm, it is hard to clip precisely
if any([_ in name for _ in avoid_clipping]):
continue
named_linears[name].cuda()
max_val = self._compute_best_clip(named_linears[name].weight, input_feat[name])
clip_list.append((name, max_val))
named_linears[name].cpu()
return clip_list
@torch.no_grad()
def _compute_best_clip(self, w: torch.Tensor, input_feat: torch.Tensor, n_grid=20, max_shrink=0.5, n_sample_token=512):
assert w.dim() == 2
org_w_shape = w.shape
# w [co, ci] -> [co, 1, n_group, group size]
# input_feat [n_token, ci] -> [1, n_token, n_group, group size]
group_size = self.group_size if self.group_size > 0 else w.shape[1]
input_feat = input_feat.view(-1, input_feat.shape[-1])
input_feat = input_feat.reshape(1, input_feat.shape[0], -1, group_size)
input_feat = input_feat[:, 0::input_feat.shape[1] // n_sample_token]
w = w.reshape(w.shape[0], 1, -1, group_size)
oc_batch_size = 256 if w.shape[0] % 256 == 0 else 64 # prevent OOM
assert w.shape[0] % oc_batch_size == 0
w_all = w
best_max_val_all = []
for i_b in range(w.shape[0] // oc_batch_size):
w = w_all[i_b * oc_batch_size: (i_b + 1) * oc_batch_size]
org_max_val = w.abs().amax(dim=-1, keepdim=True) # co, 1, n_group, 1
best_max_val = org_max_val.clone()
min_errs = torch.ones_like(org_max_val) * 1e9
input_feat = input_feat.to(w.device)
org_out = (input_feat * w).sum(dim=-1) # co, n_token, n_group
for i_s in range(int(max_shrink * n_grid)):
max_val = org_max_val * (1 - i_s / n_grid)
min_val = - max_val
cur_w = torch.clamp(w, min_val, max_val)
q_w = self.pseudo_quantize_tensor(cur_w)
cur_out = (input_feat * q_w).sum(dim=-1)
# co, 1, n_group, 1
err = (cur_out - org_out).pow(2).mean(dim=1).view(min_errs.shape)
del cur_w
del cur_out
cur_best_idx = err < min_errs
min_errs[cur_best_idx] = err[cur_best_idx]
best_max_val[cur_best_idx] = max_val[cur_best_idx]
best_max_val_all.append(best_max_val)
best_max_val = torch.cat(best_max_val_all, dim=0)
clear_memory(input_feat)
clear_memory(org_out)
return best_max_val.squeeze(1)
def init_quant(self, n_samples=128, seqlen=512):
modules = self.awq_model.get_model_layers(self.model)
samples = get_calib_dataset(
data=self.calib_data, tokenizer=self.tokenizer, n_samples=n_samples, block_size=seqlen,
split=self.split, text_column=self.text_column
)
samples = torch.cat(samples, dim=0)
inps = []
layer_kwargs = {}
modules[0] = modules[0].cuda()
self.awq_model.move_embed(self.model, "cuda")
# get input and kwargs to layer 0
# with_kwargs is only supported in PyTorch 2.0
# use this Catcher hack for now
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, hijacked_inputs, **kwargs):
inps.append(hijacked_inputs)
layer_kwargs.update(kwargs)
raise ValueError # early exit to break later inference
# patch layer 0 to catch input and kwargs
modules[0] = Catcher(modules[0])
try:
self.model(samples.to(next(self.model.parameters()).device))
except ValueError: # work with early exit
pass
del samples
modules[0] = modules[0].module # restore
inps = inps[0]
modules[0] = modules[0].cpu()
self.awq_model.move_embed(self.model, "cpu")
clear_memory()
return modules, layer_kwargs, inps
def _get_input_feat(self, layer, named_linears):
# firstly, get input features of all linear layers
def cache_input_hook(m, x, y, name, feat_dict):
x = x[0]
x = x.detach().cpu()
feat_dict[name].append(x)
input_feat = defaultdict(list)
handles = []
for name in named_linears:
handles.append(named_linears[name].register_forward_hook(
functools.partial(cache_input_hook, name=name,
feat_dict=input_feat)))
self.inps = self.inps.to(next(layer.parameters()).device) # in case multi-gpu
# get output as next layer's input
self.inps = layer(self.inps, **self.module_kwargs)[0]
for h in handles:
h.remove()
# now solve for scaling and clipping
input_feat = {k: torch.cat(v, dim=0) for k, v in input_feat.items()}
return input_feat
|