File size: 2,399 Bytes
72268ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import gc
import torch
import accelerate


def get_module_by_name_suffix(model, module_name: str):
    for name, module in model.named_modules():
        if name.endswith(module_name):
            return module

def simple_dispatch_model(model, device_map):
    from accelerate.hooks import add_hook_to_module, AlignDevicesHook

    if "" in device_map:
        d = device_map[""]
        model = model.to(torch.device(d))
        model.hf_device_map = device_map
        return model

    tied_params = accelerate.utils.modeling.find_tied_parameters(model)
    if set(device_map.values()) == {"cpu"} or set(device_map.values()) == {"cpu", "disk"}:
        main_device = "cpu"
    else:
        main_device = [d for d in device_map.values() if d not in ["cpu", "disk"]][0]

    cpu_offload_group = [(n, d) for n, d in device_map.items() if d == "cpu"]
    prev_hook = None
    for idx, (n, d) in enumerate(cpu_offload_group):
        m = get_module_by_name_suffix(model, n)
        _, prev_hook = accelerate.cpu_offload_with_hook(m, execution_device=main_device, prev_module_hook=prev_hook)
    # set first cpu offload module's prev_module_hook to the last cpu offload module's hook
    if len(cpu_offload_group) > 1:
        get_module_by_name_suffix(model, cpu_offload_group[0][0])._hf_hook.prev_module_hook = prev_hook

    for n, d in device_map.items():
        m = get_module_by_name_suffix(model, n)
        if d != "cpu":
            d = torch.device(d)
            hook = AlignDevicesHook(d, io_same_device=True, place_submodules=True)
            add_hook_to_module(m, hook)
    accelerate.utils.modeling.retie_parameters(model, tied_params)
    model.hf_device_map = device_map

    return model

def set_module_name(model, name, value):
    if '.' in name:
        parent_name = name.rsplit('.', 1)[0]
        child_name = name[len(parent_name) + 1:]
        parent = model.get_submodule(parent_name)
    else:
        parent_name = ''
        parent = model
        child_name = name

    setattr(parent, child_name, value)

def clear_memory(weight=None):
    if weight is not None:
        del weight
    gc.collect()
    torch.cuda.empty_cache()

def compute_memory_used_pct(device):
    memory_used = torch.cuda.max_memory_allocated(device) / (1024 ** 3)
    memory_pct = memory_used / (torch.cuda.get_device_properties(device).total_memory / (1024 ** 3)) * 100
    return memory_pct