File size: 8,478 Bytes
72268ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
from model import ExLlama, ExLlamaCache, ExLlamaConfig
from lora import ExLlamaLora
from tokenizer import ExLlamaTokenizer
from generator import ExLlamaGenerator
import argparse
import torch
import sys
import os
import glob
import model_init
# Simple interactive chatbot script
torch.set_grad_enabled(False)
torch.cuda._lazy_init()
# Parse arguments
parser = argparse.ArgumentParser(description = "Simple chatbot example for ExLlama")
model_init.add_args(parser)
parser.add_argument("-lora", "--lora", type = str, help = "Path to LoRA binary to use during benchmark")
parser.add_argument("-loracfg", "--lora_config", type = str, help = "Path to LoRA config to use during benchmark")
parser.add_argument("-ld", "--lora_dir", type = str, help = "Path to LoRA config and binary. to use during benchmark")
parser.add_argument("-p", "--prompt", type = str, help = "Prompt file")
parser.add_argument("-un", "--username", type = str, help = "Display name of user", default = "User")
parser.add_argument("-bn", "--botname", type = str, help = "Display name of chatbot", default = "Chatbort")
parser.add_argument("-bf", "--botfirst", action = "store_true", help = "Start chat on bot's turn")
parser.add_argument("-nnl", "--no_newline", action = "store_true", help = "Do not break bot's response on newline (allow multi-paragraph responses)")
parser.add_argument("-temp", "--temperature", type = float, help = "Temperature", default = 0.95)
parser.add_argument("-topk", "--top_k", type = int, help = "Top-K", default = 20)
parser.add_argument("-topp", "--top_p", type = float, help = "Top-P", default = 0.65)
parser.add_argument("-minp", "--min_p", type = float, help = "Min-P", default = 0.00)
parser.add_argument("-repp", "--repetition_penalty", type = float, help = "Repetition penalty", default = 1.15)
parser.add_argument("-repps", "--repetition_penalty_sustain", type = int, help = "Past length for repetition penalty", default = 256)
parser.add_argument("-beams", "--beams", type = int, help = "Number of beams for beam search", default = 1)
parser.add_argument("-beamlen", "--beam_length", type = int, help = "Number of future tokens to consider", default = 1)
args = parser.parse_args()
model_init.post_parse(args)
model_init.get_model_files(args)
# Paths
if args.lora_dir is not None:
args.lora_config = os.path.join(args.lora_dir, "adapter_config.json")
args.lora = os.path.join(args.lora_dir, "adapter_model.bin")
# Some feedback
print(f" -- Sequence length: {args.length}")
print(f" -- Temperature: {args.temperature:.2f}")
print(f" -- Top-K: {args.top_k}")
print(f" -- Top-P: {args.top_p:.2f}")
print(f" -- Min-P: {args.min_p:.2f}")
print(f" -- Repetition penalty: {args.repetition_penalty:.2f}")
print(f" -- Beams: {args.beams} x {args.beam_length}")
print_opts = []
if args.no_newline: print_opts.append("no_newline")
if args.botfirst: print_opts.append("botfirst")
model_init.print_options(args, print_opts)
# Globals
model_init.set_globals(args)
# Load prompt file
username = args.username
bot_name = args.botname
if args.prompt is not None:
with open(args.prompt, "r") as f:
past = f.read()
past = past.replace("{username}", username)
past = past.replace("{bot_name}", bot_name)
past = past.strip() + "\n"
else:
past = f"{bot_name}: Hello, {username}\n"
# past += "User: Hi. Please say \"Shhhhhh\"?\n"
# args.botfirst = True
# Instantiate model and generator
config = model_init.make_config(args)
model = ExLlama(config)
cache = ExLlamaCache(model)
tokenizer = ExLlamaTokenizer(args.tokenizer)
model_init.print_stats(model)
# Load LoRA
lora = None
if args.lora:
print(f" -- LoRA config: {args.lora_config}")
print(f" -- Loading LoRA: {args.lora}")
if args.lora_config is None:
print(f" ## Error: please specify lora path to adapter_config.json")
sys.exit()
lora = ExLlamaLora(model, args.lora_config, args.lora)
if lora.bias_ignored:
print(f" !! Warning: LoRA zero bias ignored")
# Generator
generator = ExLlamaGenerator(model, tokenizer, cache)
generator.settings = ExLlamaGenerator.Settings()
generator.settings.temperature = args.temperature
generator.settings.top_k = args.top_k
generator.settings.top_p = args.top_p
generator.settings.min_p = args.min_p
generator.settings.token_repetition_penalty_max = args.repetition_penalty
generator.settings.token_repetition_penalty_sustain = args.repetition_penalty_sustain
generator.settings.token_repetition_penalty_decay = generator.settings.token_repetition_penalty_sustain // 2
generator.settings.beams = args.beams
generator.settings.beam_length = args.beam_length
generator.lora = lora
break_on_newline = not args.no_newline
# Be nice to Chatbort
min_response_tokens = 4
max_response_tokens = 256
extra_prune = 256
print(past, end = "")
ids = tokenizer.encode(past)
generator.gen_begin(ids)
next_userprompt = username + ": "
first_round = True
while True:
res_line = bot_name + ":"
res_tokens = tokenizer.encode(res_line)
num_res_tokens = res_tokens.shape[-1] # Decode from here
if first_round and args.botfirst: in_tokens = res_tokens
else:
# Read and format input
in_line = input(next_userprompt)
in_line = username + ": " + in_line.strip() + "\n"
next_userprompt = username + ": "
# No need for this, really, unless we were logging the chat. The actual history we work on is kept in the
# tokenized sequence in the generator and the state in the cache.
past += in_line
# SentencePiece doesn't tokenize spaces separately so we can't know from individual tokens if they start a new word
# or not. Instead, repeatedly decode the generated response as it's being built, starting from the last newline,
# and print out the differences between consecutive decodings to stream out the response.
in_tokens = tokenizer.encode(in_line)
in_tokens = torch.cat((in_tokens, res_tokens), dim = 1)
# If we're approaching the context limit, prune some whole lines from the start of the context. Also prune a
# little extra so we don't end up rebuilding the cache on every line when up against the limit.
expect_tokens = in_tokens.shape[-1] + max_response_tokens
max_tokens = config.max_seq_len - expect_tokens
if generator.gen_num_tokens() >= max_tokens:
generator.gen_prune_to(config.max_seq_len - expect_tokens - extra_prune, tokenizer.newline_token_id)
# Feed in the user input and "{bot_name}:", tokenized
generator.gen_feed_tokens(in_tokens)
# Generate with streaming
print(res_line, end = "")
sys.stdout.flush()
generator.begin_beam_search()
for i in range(max_response_tokens):
# Disallowing the end condition tokens seems like a clean way to force longer replies.
if i < min_response_tokens:
generator.disallow_tokens([tokenizer.newline_token_id, tokenizer.eos_token_id])
else:
generator.disallow_tokens(None)
# Get a token
gen_token = generator.beam_search()
# If token is EOS, replace it with newline before continuing
if gen_token.item() == tokenizer.eos_token_id:
generator.replace_last_token(tokenizer.newline_token_id)
# Decode the current line and print any characters added
num_res_tokens += 1
text = tokenizer.decode(generator.sequence_actual[:, -num_res_tokens:][0])
new_text = text[len(res_line):]
skip_space = res_line.endswith("\n") and new_text.startswith(" ") # Bit prettier console output
res_line += new_text
if skip_space: new_text = new_text[1:]
print(new_text, end="") # (character streaming output is here)
sys.stdout.flush()
# End conditions
if break_on_newline and gen_token.item() == tokenizer.newline_token_id: break
if gen_token.item() == tokenizer.eos_token_id: break
# Some models will not (or will inconsistently) emit EOS tokens but in a chat sequence will often begin
# generating for the user instead. Try to catch this and roll back a few tokens to begin the user round.
if res_line.endswith(f"{username}:"):
plen = tokenizer.encode(f"{username}:").shape[-1]
generator.gen_rewind(plen)
next_userprompt = " "
break
generator.end_beam_search()
past += res_line
first_round = False
|